BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 22084147)

  • 41. A new method for predicting essential proteins based on participation degree in protein complex and subgraph density.
    Lei X; Yang X
    PLoS One; 2018; 13(6):e0198998. PubMed ID: 29894517
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A fast hierarchical clustering algorithm for functional modules discovery in protein interaction networks.
    Wang J; Li M; Chen J; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(3):607-20. PubMed ID: 20733244
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protein complex prediction in large ontology attributed protein-protein interaction networks.
    Zhang Y; Lin H; Yang Z; Wang J; Li Y; Xu B
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(3):729-41. PubMed ID: 24091405
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.
    Theofilatos K; Pavlopoulou N; Papasavvas C; Likothanassis S; Dimitrakopoulos C; Georgopoulos E; Moschopoulos C; Mavroudi S
    Artif Intell Med; 2015 Mar; 63(3):181-9. PubMed ID: 25765008
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Iteration method for predicting essential proteins based on orthology and protein-protein interaction networks.
    Peng W; Wang J; Wang W; Liu Q; Wu FX; Pan Y
    BMC Syst Biol; 2012 Jul; 6():87. PubMed ID: 22808943
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel extended Pareto Optimality Consensus model for predicting essential proteins.
    Li G; Li M; Peng W; Li Y; Pan Y; Wang J
    J Theor Biol; 2019 Nov; 480():141-149. PubMed ID: 31398315
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Essential protein identification based on essential protein-protein interaction prediction by Integrated Edge Weights.
    Jiang Y; Wang Y; Pang W; Chen L; Sun H; Liang Y; Blanzieri E
    Methods; 2015 Jul; 83():51-62. PubMed ID: 25892709
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Clustering and overlapping modules detection in PPI network based on IBFO.
    Lei X; Wu S; Ge L; Zhang A
    Proteomics; 2013 Jan; 13(2):278-90. PubMed ID: 23229795
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative analysis of gene ontology-based semantic similarity measurements for the application of identifying essential proteins.
    Xue X; Zhang W; Fan A
    PLoS One; 2023; 18(4):e0284274. PubMed ID: 37083829
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Understanding gene essentiality by finely characterizing hubs in the yeast protein interaction network.
    Pang K; Sheng H; Ma X
    Biochem Biophys Res Commun; 2010 Oct; 401(1):112-6. PubMed ID: 20833129
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Discovering essential proteins based on PPI network and protein complex.
    Ren J; Wang J; Li M; Wu F
    Int J Data Min Bioinform; 2015; 12(1):24-43. PubMed ID: 26489140
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality.
    Zotenko E; Mestre J; O'Leary DP; Przytycka TM
    PLoS Comput Biol; 2008 Aug; 4(8):e1000140. PubMed ID: 18670624
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Network Embedding the Protein-Protein Interaction Network for Human Essential Genes Identification.
    Dai W; Chang Q; Peng W; Zhong J; Li Y
    Genes (Basel); 2020 Jan; 11(2):. PubMed ID: 32023848
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Clustering based on multiple biological information: approach for predicting protein complexes.
    Tang X; Feng Q; Wang J; He Y; Pan Y
    IET Syst Biol; 2013 Oct; 7(5):223-30. PubMed ID: 24067423
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting essential proteins based on subcellular localization, orthology and PPI networks.
    Li G; Li M; Wang J; Wu J; Wu FX; Pan Y
    BMC Bioinformatics; 2016 Aug; 17 Suppl 8(Suppl 8):279. PubMed ID: 27586883
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improved flower pollination algorithm for identifying essential proteins.
    Lei X; Fang M; Wu FX; Chen L
    BMC Syst Biol; 2018 Apr; 12(Suppl 4):46. PubMed ID: 29745838
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of essential proteins based on ranking edge-weights in protein-protein interaction networks.
    Wang Y; Sun H; Du W; Blanzieri E; Viero G; Xu Y; Liang Y
    PLoS One; 2014; 9(9):e108716. PubMed ID: 25268881
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predicting Protein Functions by Using Unbalanced Random Walk Algorithm on Three Biological Networks.
    Peng W; Li M; Chen L; Wang L
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(2):360-369. PubMed ID: 28368814
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks.
    Tang Y; Li M; Wang J; Pan Y; Wu FX
    Biosystems; 2015 Jan; 127():67-72. PubMed ID: 25451770
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Link clustering explains non-central and contextually essential genes in protein interaction networks.
    Kim I; Lee H; Lee K; Han SK; Kim D; Kim S
    Sci Rep; 2019 Aug; 9(1):11672. PubMed ID: 31406201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.