These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 22084250)

  • 1. Elucidation of acid-induced unfolding and aggregation of human immunoglobulin IgG1 and IgG2 Fc.
    Latypov RF; Hogan S; Lau H; Gadgil H; Liu D
    J Biol Chem; 2012 Jan; 287(2):1381-96. PubMed ID: 22084250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid-induced aggregation propensity of nivolumab is dependent on the Fc.
    Liu B; Guo H; Xu J; Qin T; Xu L; Zhang J; Guo Q; Zhang D; Qian W; Li B; Dai J; Hou S; Guo Y; Wang H
    MAbs; 2016; 8(6):1107-17. PubMed ID: 27310175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pH, temperature, and salt on the stability of Escherichia coli- and Chinese hamster ovary cell-derived IgG1 Fc.
    Li CH; Narhi LO; Wen J; Dimitrova M; Wen ZQ; Li J; Pollastrini J; Nguyen X; Tsuruda T; Jiang Y
    Biochemistry; 2012 Dec; 51(50):10056-65. PubMed ID: 23078371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perturbation of thermal unfolding and aggregation of human IgG1 Fc fragment by Hofmeister anions.
    Zhang-van Enk J; Mason BD; Yu L; Zhang L; Hamouda W; Huang G; Liu D; Remmele RL; Zhang J
    Mol Pharm; 2013 Feb; 10(2):619-30. PubMed ID: 23256580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of deglycosylated human IgG4-Fc.
    Davies AM; Jefferis R; Sutton BJ
    Mol Immunol; 2014 Nov; 62(1):46-53. PubMed ID: 24956411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing Conformational Diversity of Fc Domains in Aggregation-Prone Monoclonal Antibodies.
    Majumder S; Jones MT; Kimmel M; Alphonse Ignatius A
    Pharm Res; 2018 Sep; 35(11):220. PubMed ID: 30255351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycosylation of human IgG-Fc: influences on structure revealed by differential scanning micro-calorimetry.
    Ghirlando R; Lund J; Goodall M; Jefferis R
    Immunol Lett; 1999 May; 68(1):47-52. PubMed ID: 10397155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weak protein interactions and pH- and temperature-dependent aggregation of human Fc1.
    Wu H; Truncali K; Ritchie J; Kroe-Barrett R; Singh S; Robinson AS; Roberts CJ
    MAbs; 2015; 7(6):1072-83. PubMed ID: 26267255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and stability changes of human IgG1 Fc as a consequence of methionine oxidation.
    Liu D; Ren D; Huang H; Dankberg J; Rosenfeld R; Cocco MJ; Li L; Brems DN; Remmele RL
    Biochemistry; 2008 May; 47(18):5088-100. PubMed ID: 18407665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy.
    Yamaguchi Y; Nishimura M; Nagano M; Yagi H; Sasakawa H; Uchida K; Shitara K; Kato K
    Biochim Biophys Acta; 2006 Apr; 1760(4):693-700. PubMed ID: 16343775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization of the Man5 glycoform of human IgG3 Fc.
    Shah IS; Lovell S; Mehzabeen N; Battaile KP; Tolbert TJ
    Mol Immunol; 2017 Dec; 92():28-37. PubMed ID: 29031045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acid-induced aggregation of human monoclonal IgG1 and IgG2: molecular mechanism and the effect of solution composition.
    Hari SB; Lau H; Razinkov VI; Chen S; Latypov RF
    Biochemistry; 2010 Nov; 49(43):9328-38. PubMed ID: 20843079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulation of the crystallizable fragment of IgG1-insights for the design of Fcabs.
    Lai B; Hasenhindl C; Obinger C; Oostenbrink C
    Int J Mol Sci; 2014 Jan; 15(1):438-55. PubMed ID: 24451126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive elucidation of the structural and functional roles of engineered disulfide bonds in antibody Fc fragment.
    Zeng F; Yang C; Gao X; Li X; Zhang Z; Gong R
    J Biol Chem; 2018 Dec; 293(49):19127-19135. PubMed ID: 30327432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms.
    Wada R; Matsui M; Kawasaki N
    MAbs; 2019; 11(2):350-372. PubMed ID: 30466347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering a human IgG2 antibody stable at low pH.
    Saito S; Namisaki H; Hiraishi K; Takahashi N; Iida S
    Protein Sci; 2020 May; 29(5):1186-1195. PubMed ID: 32142185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IgG2 Fc structure and the dynamic features of the IgG CH2-CH3 interface.
    Teplyakov A; Zhao Y; Malia TJ; Obmolova G; Gilliland GL
    Mol Immunol; 2013 Nov; 56(1-2):131-9. PubMed ID: 23628091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisiting the role of glycosylation in the structure of human IgG Fc.
    Borrok MJ; Jung ST; Kang TH; Monzingo AF; Georgiou G
    ACS Chem Biol; 2012 Sep; 7(9):1596-602. PubMed ID: 22747430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the relevance of local conformational stability and dynamics to the aggregation propensity of an IgG1 and IgG2 monoclonal antibodies.
    Thakkar SV; Sahni N; Joshi SB; Kerwin BA; He F; Volkin DB; Middaugh CR
    Protein Sci; 2013 Oct; 22(10):1295-305. PubMed ID: 23893936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstration by pulsed neutron scattering that the arrangement of the Fab and Fc fragments in the overall structures of bovine IgG1 and IgG2 in solution is similar.
    Mayans MO; Coadwell WJ; Beale D; Symons DB; Perkins SJ
    Biochem J; 1995 Oct; 311 ( Pt 1)(Pt 1):283-91. PubMed ID: 7575466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.