These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 22084384)

  • 21. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation.
    Zegerman P; Diffley JF
    Nature; 2010 Sep; 467(7314):474-8. PubMed ID: 20835227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential modulation of G1-S-phase cyclin-dependent kinase 2/cyclin complexes occurs during the acquisition of a polyploid DNA content.
    Datta NS; Williams JL; Long MW
    Cell Growth Differ; 1998 Aug; 9(8):639-50. PubMed ID: 9716181
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation.
    Visintin R; Craig K; Hwang ES; Prinz S; Tyers M; Amon A
    Mol Cell; 1998 Dec; 2(6):709-18. PubMed ID: 9885559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclin/Cdk complexes: their involvement in cell cycle progression and mitotic division.
    John PC; Mews M; Moore R
    Protoplasma; 2001; 216(3-4):119-42. PubMed ID: 11732181
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-step control of spindle pole body duplication by cyclin-dependent kinase.
    Haase SB; Winey M; Reed SI
    Nat Cell Biol; 2001 Jan; 3(1):38-42. PubMed ID: 11146624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphorylation by cyclin B-Cdk underlies release of mitotic exit activator Cdc14 from the nucleolus.
    Azzam R; Chen SL; Shou W; Mah AS; Alexandru G; Nasmyth K; Annan RS; Carr SA; Deshaies RJ
    Science; 2004 Jul; 305(5683):516-9. PubMed ID: 15273393
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitotic expression of Spo13 alters M-phase progression and nucleolar localization of Cdc14 in budding yeast.
    Varela E; Schlecht U; Moina A; Fackenthal JD; Washburn BK; Niederhauser-Wiederkehr C; Tsai-Pflugfelder M; Primig M; Gasser SM; Esposito RE
    Genetics; 2010 Jul; 185(3):841-54. PubMed ID: 20407133
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Late-G1 cyclin-CDK activity is essential for control of cell morphogenesis in budding yeast.
    Moffat J; Andrews B
    Nat Cell Biol; 2004 Jan; 6(1):59-66. PubMed ID: 14688790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Budding yeast Swe1 is involved in the control of mitotic spindle elongation and is regulated by Cdc14 phosphatase during mitosis.
    Raspelli E; Cassani C; Chiroli E; Fraschini R
    J Biol Chem; 2015 Jan; 290(1):1-12. PubMed ID: 25406317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control of mitotic events by the Cdc42 GTPase, the Clb2 cyclin and a member of the PAK kinase family.
    Tjandra H; Compton J; Kellogg D
    Curr Biol; 1998 Sep; 8(18):991-1000. PubMed ID: 9740799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphorylation-dependent binding of mitotic cyclins to Cdc6 contributes to DNA replication control.
    Mimura S; Seki T; Tanaka S; Diffley JF
    Nature; 2004 Oct; 431(7012):1118-23. PubMed ID: 15496876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new linear cyclin docking motif that mediates exclusively S-phase CDK-specific signaling.
    Faustova I; Bulatovic L; Matiyevskaya F; Valk E; Örd M; Loog M
    EMBO J; 2021 Jan; 40(2):e105839. PubMed ID: 33210757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. G1 cyclin driven DNA replication.
    Palou R; Malik A; Palou G; Zeng F; Ren P; Quintana DG
    Cell Cycle; 2015; 14(24):3842-50. PubMed ID: 26176277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Re-examining the role of Cdc14 phosphatase in reversal of Cdk phosphorylation during mitotic exit.
    Powers BL; Hall MC
    J Cell Sci; 2017 Aug; 130(16):2673-2681. PubMed ID: 28663385
    [TBL] [Abstract][Full Text] [Related]  

  • 35. S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state.
    Dahmann C; Diffley JF; Nasmyth KA
    Curr Biol; 1995 Nov; 5(11):1257-69. PubMed ID: 8574583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA replication and mitotic entry: A brake model for cell cycle progression.
    Lemmens B; Lindqvist A
    J Cell Biol; 2019 Dec; 218(12):3892-3902. PubMed ID: 31712253
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proline-Rich Motifs Control G2-CDK Target Phosphorylation and Priming an Anchoring Protein for Polo Kinase Localization.
    Örd M; Puss KK; Kivi R; Möll K; Ojala T; Borovko I; Faustova I; Venta R; Valk E; Kõivomägi M; Loog M
    Cell Rep; 2020 Jun; 31(11):107757. PubMed ID: 32553169
    [TBL] [Abstract][Full Text] [Related]  

  • 38. S-phase cyclin-dependent kinases promote sister chromatid cohesion in budding yeast.
    Hsu WS; Erickson SL; Tsai HJ; Andrews CA; Vas AC; Clarke DJ
    Mol Cell Biol; 2011 Jun; 31(12):2470-83. PubMed ID: 21518961
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cyclins and the G2/M transition.
    Jackman MR; Pines JN
    Cancer Surv; 1997; 29():47-73. PubMed ID: 9338096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Substrate Trapping Method for Identification of Direct Cdc14 Phosphatase Targets.
    Powers BL; Hall H; Charbonneau H; Hall MC
    Methods Mol Biol; 2017; 1505():119-132. PubMed ID: 27826861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.