BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 22084980)

  • 1. Flexible, low-voltage, and low-hysteresis PbSe nanowire field-effect transistors.
    Kim DK; Lai Y; Vemulkar TR; Kagan CR
    ACS Nano; 2011 Dec; 5(12):10074-83. PubMed ID: 22084980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ambipolar and unipolar PbSe nanowire field-effect transistors.
    Kim DK; Vemulkar TR; Oh SJ; Koh WK; Murray CB; Kagan CR
    ACS Nano; 2011 Apr; 5(4):3230-6. PubMed ID: 21405024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates.
    Joshi P; Romero HE; Neal AT; Toutam VK; Tadigadapa SA
    J Phys Condens Matter; 2010 Aug; 22(33):334214. PubMed ID: 21386504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of directly-assembled ZnO nanowire field effect transistors with polymer gate dielectrics.
    Yoon A; Hong WK; Lee T
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4101-5. PubMed ID: 18047128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ambipolar, low-voltage and low-hysteresis PbSe nanowire field-effect transistors by electrolyte gating.
    Lokteva I; Thiemann S; Gannott F; Zaumseil J
    Nanoscale; 2013 May; 5(10):4230-5. PubMed ID: 23545580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing.
    Chang YK; Hong FC
    Nanotechnology; 2009 May; 20(19):195302. PubMed ID: 19420638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remote doping and Schottky barrier formation in strongly quantum confined single PbSe nanowire field-effect transistors.
    Oh SJ; Kim DK; Kagan CR
    ACS Nano; 2012 May; 6(5):4328-34. PubMed ID: 22512336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. n-Type behavior of graphene supported on Si/SiO(2) substrates.
    Romero HE; Shen N; Joshi P; Gutierrez HR; Tadigadapa SA; Sofo JO; Eklund PC
    ACS Nano; 2008 Oct; 2(10):2037-44. PubMed ID: 19206449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular gating of silicon nanowire field-effect transistors with nonpolar analytes.
    Paska Y; Stelzner T; Assad O; Tisch U; Christiansen S; Haick H
    ACS Nano; 2012 Jan; 6(1):335-45. PubMed ID: 22176137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis.
    Joung D; Chunder A; Zhai L; Khondaker SI
    Nanotechnology; 2010 Apr; 21(16):165202. PubMed ID: 20348593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced sensing of nonpolar volatile organic compounds by silicon nanowire field effect transistors.
    Paska Y; Stelzner T; Christiansen S; Haick H
    ACS Nano; 2011 Jul; 5(7):5620-6. PubMed ID: 21648442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doping dependent crystal structures and optoelectronic properties of n-type CdSe:Ga nanowries.
    Hu Z; Zhang X; Xie C; Wu C; Zhang X; Bian L; Wu Y; Wang L; Zhang Y; Jie J
    Nanoscale; 2011 Nov; 3(11):4798-803. PubMed ID: 21952747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotube thin film transistors based on aerosol methods.
    Zavodchikova MY; Kulmala T; Nasibulin AG; Ermolov V; Franssila S; Grigoras K; Kauppinen EI
    Nanotechnology; 2009 Feb; 20(8):085201. PubMed ID: 19417441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of poly-silicon nano-wire transistors on plastic substrates.
    Park C; Lee S; Choi M; Kang M; Jung Y; Hwang S; Ahn D; Lee J; Song C
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4150-3. PubMed ID: 18047139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular monolayers as semiconducting channels in field effect transistors.
    Kagan CR
    Top Curr Chem; 2012; 312():213-37. PubMed ID: 21809186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonvolatile memory functionality of ZnO nanowire transistors controlled by mobile protons.
    Yoon J; Hong WK; Jo M; Jo G; Choe M; Park W; Sohn JI; Nedic S; Hwang H; Welland ME; Lee T
    ACS Nano; 2011 Jan; 5(1):558-64. PubMed ID: 21155534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors.
    Tang J; Wang CY; Xiu F; Lang M; Chu LW; Tsai CJ; Chueh YL; Chen LJ; Wang KL
    ACS Nano; 2011 Jul; 5(7):6008-15. PubMed ID: 21699197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel poly-silicon nanowire field effect transistor for biosensing application.
    Hsiao CY; Lin CH; Hung CH; Su CJ; Lo YR; Lee CC; Lin HC; Ko FH; Huang TY; Yang YS
    Biosens Bioelectron; 2009 Jan; 24(5):1223-9. PubMed ID: 18760914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inkjet printed, high mobility inorganic-oxide field effect transistors processed at room temperature.
    Dasgupta S; Kruk R; Mechau N; Hahn H
    ACS Nano; 2011 Dec; 5(12):9628-38. PubMed ID: 22077094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate engineering by hexagonal boron nitride/SiO2 for hysteresis-free graphene FETs and large-scale graphene p-n junctions.
    Xu H; Wu J; Chen Y; Zhang H; Zhang J
    Chem Asian J; 2013 Oct; 8(10):2446-52. PubMed ID: 23840025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.