These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 22085176)
1. The long-term potential of biodegradable poly(lactide-co-glycolide) microparticles as the next-generation vaccine adjuvant. Jain S; O'Hagan DT; Singh M Expert Rev Vaccines; 2011 Dec; 10(12):1731-42. PubMed ID: 22085176 [TBL] [Abstract][Full Text] [Related]
2. Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. Kazzaz J; Singh M; Ugozzoli M; Chesko J; Soenawan E; O'Hagan DT J Control Release; 2006 Feb; 110(3):566-73. PubMed ID: 16360956 [TBL] [Abstract][Full Text] [Related]
3. Poly(lactide-co-glycolide) microparticles for the development of single-dose controlled-release vaccines. Gupta RK; Singh M; O'Hagan DT Adv Drug Deliv Rev; 1998 Jul; 32(3):225-246. PubMed ID: 10837646 [TBL] [Abstract][Full Text] [Related]
5. Cationic microparticles are a potent delivery system for a HCV DNA vaccine. O'Hagan DT; Singh M; Dong C; Ugozzoli M; Berger K; Glazer E; Selby M; Wininger M; Ng P; Crawford K; Paliard X; Coates S; Houghton M Vaccine; 2004 Dec; 23(5):672-80. PubMed ID: 15542189 [TBL] [Abstract][Full Text] [Related]
6. An investigation of the factors controlling the adsorption of protein antigens to anionic PLG microparticles. Chesko J; Kazzaz J; Ugozzoli M; O'hagan DT; Singh M J Pharm Sci; 2005 Nov; 94(11):2510-9. PubMed ID: 16200615 [TBL] [Abstract][Full Text] [Related]
7. Characterization of protein-adjuvant coencapsulation in microparticles for vaccine delivery. Mathew S; Lendlein A; Wischke C Eur J Pharm Biopharm; 2014 Jul; 87(2):403-7. PubMed ID: 24747810 [TBL] [Abstract][Full Text] [Related]
8. Encapsulation of chimeric protein rSAG1/2 into poly(lactide-co-glycolide) microparticles induces long-term protective immunity against Toxoplasma gondii in mice. Chuang SC; Ko JC; Chen CP; Du JT; Yang CD Exp Parasitol; 2013 Aug; 134(4):430-7. PubMed ID: 23624036 [TBL] [Abstract][Full Text] [Related]
9. Characterization of antigens adsorbed to anionic PLG microparticles by XPS and TOF-SIMS. Chesko J; Kazzaz J; Ugozzoli M; Singh M; O'Hagan DT; Madden C; Perkins M; Patel N J Pharm Sci; 2008 Apr; 97(4):1443-53. PubMed ID: 17724659 [TBL] [Abstract][Full Text] [Related]
10. Enhancing the therapeutic efficacy of CpG oligonucleotides using biodegradable microparticles. Malyala P; O'Hagan DT; Singh M Adv Drug Deliv Rev; 2009 Mar; 61(3):218-25. PubMed ID: 19168103 [TBL] [Abstract][Full Text] [Related]
11. The preparation and characterization of PLG nanoparticles with an entrapped synthetic TLR7 agonist and their preclinical evaluation as adjuvant for an adsorbed DTaP vaccine. Bruno C; Agnolon V; Berti F; Bufali S; O'Hagan DT; Baudner BC Eur J Pharm Biopharm; 2016 Aug; 105():1-8. PubMed ID: 27224856 [TBL] [Abstract][Full Text] [Related]
12. Development of hepatitis B oral vaccine using B-cell epitope loaded PLG microparticles. Rajkannan R; Dhanaraju MD; Gopinath D; Selvaraj D; Jayakumar R Vaccine; 2006 Jun; 24(24):5149-57. PubMed ID: 16713035 [TBL] [Abstract][Full Text] [Related]
13. Aspects of the design and delivery of microparticles for vaccine applications. Jenkins PG; Coombes AG; Yeh MK; Thomas NW; Davis SS J Drug Target; 1995; 3(1):79-81. PubMed ID: 7655826 [TBL] [Abstract][Full Text] [Related]
14. Co-encapsulation of an antigen and CpG oligonucleotides into PLGA microparticles by TROMS technology. San Román B; Irache JM; Gómez S; Tsapis N; Gamazo C; Espuelas MS Eur J Pharm Biopharm; 2008 Sep; 70(1):98-108. PubMed ID: 18501572 [TBL] [Abstract][Full Text] [Related]
15. Using TEM to couple transient protein distribution and release for PLGA microparticles for potential use as vaccine delivery vehicles. Zhao A; Rodgers VG J Control Release; 2006 Jun; 113(1):15-22. PubMed ID: 16707186 [TBL] [Abstract][Full Text] [Related]
16. Preparation of protein loaded poly(D,L-lactide-co-glycolide) microparticles for the antigen delivery to dendritic cells using a static micromixer. Wischke C; Lorenzen D; Zimmermann J; Borchert HH Eur J Pharm Biopharm; 2006 Apr; 62(3):247-53. PubMed ID: 16288857 [TBL] [Abstract][Full Text] [Related]
17. Inactive Vibrio cholerae whole-cell vaccine-loaded biodegradable microparticles: in vitro release and oral vaccination. Yeh M; Chiang C J Microencapsul; 2004 Feb; 21(1):91-106. PubMed ID: 14718189 [TBL] [Abstract][Full Text] [Related]
18. A preliminary evaluation of alternative adjuvants to alum using a range of established and new generation vaccine antigens. Singh M; Ugozzoli M; Kazzaz J; Chesko J; Soenawan E; Mannucci D; Titta F; Contorni M; Volpini G; Del Guidice G; O'Hagan DT Vaccine; 2006 Mar; 24(10):1680-6. PubMed ID: 16300864 [TBL] [Abstract][Full Text] [Related]
19. In vivo electroporation enhances the potency of poly-lactide co-glycolide (PLG) plasmid DNA immunization. Barbon CM; Baker L; Lajoie C; Ramstedt U; Hedley ML; Luby TM Vaccine; 2010 Nov; 28(50):7852-64. PubMed ID: 20943208 [TBL] [Abstract][Full Text] [Related]
20. A two-stage strategy for sterilization of poly(lactide-co-glycolide) particles by γ-irradiation does not impair their potency for vaccine delivery. Jain S; Malyala P; Pallaoro M; Giuliani M; Petersen H; O'Hagan DT; Singh M J Pharm Sci; 2011 Feb; 100(2):646-54. PubMed ID: 20665902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]