These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 22085291)
21. Characterization of Two Novel Shu C; Yan G; Huang S; Geng Y; Soberón M; Bravo A; Geng L; Zhang J Toxins (Basel); 2020 Oct; 12(10):. PubMed ID: 33027918 [TBL] [Abstract][Full Text] [Related]
22. Insecticidal Activity of Domínguez-Arrizabalaga M; Villanueva M; Escriche B; Ancín-Azpilicueta C; Caballero P Toxins (Basel); 2020 Jun; 12(7):. PubMed ID: 32610662 [No Abstract] [Full Text] [Related]
23. The 20-kDa protein of Bacillus thuringiensis subsp. israelensis enhances Bacillus sphaericus 2362 bin toxin synthesis. Park HW; Bideshi DK; Federici BA Curr Microbiol; 2007 Aug; 55(2):119-24. PubMed ID: 17597341 [TBL] [Abstract][Full Text] [Related]
24. Optimization of Cry3A yields in Bacillus thuringiensis by use of sporulation-dependent promoters in combination with the STAB-SD mRNA sequence. Park HW; Ge B; Bauer LS; Federici BA Appl Environ Microbiol; 1998 Oct; 64(10):3932-8. PubMed ID: 9758822 [TBL] [Abstract][Full Text] [Related]
27. Domain I plays an important role in the crystallization of Cry3A in Bacillus thuringiensis. Park HW; Federici BA Mol Biotechnol; 2000 Oct; 16(2):97-107. PubMed ID: 11131976 [TBL] [Abstract][Full Text] [Related]
28. Binding of Cyt1Aa and Cry11Aa toxins of Bacillus thuringiensis serovar israelensis to brush border membrane vesicles of Tipula paludosa (Diptera: Nematocera) and subsequent pore formation. Oestergaard J; Ehlers RU; Martínez-Ramírez AC; Real MD Appl Environ Microbiol; 2007 Jun; 73(11):3623-9. PubMed ID: 17416690 [TBL] [Abstract][Full Text] [Related]
29. Novel Bacillus thuringiensis binary insecticidal crystal proteins active on western corn rootworm, Diabrotica virgifera virgifera LeConte. Ellis RT; Stockhoff BA; Stamp L; Schnepf HE; Schwab GE; Knuth M; Russell J; Cardineau GA; Narva KE Appl Environ Microbiol; 2002 Mar; 68(3):1137-45. PubMed ID: 11872461 [TBL] [Abstract][Full Text] [Related]
30. Crystallization and preliminary X-ray diffraction studies of a mosquito-larvicidal toxin from Bacillus thuringiensis subsp. israelensis. Boonserm P; Ellar DJ; Li J Acta Crystallogr D Biol Crystallogr; 2003 Mar; 59(Pt 3):591-4. PubMed ID: 12595735 [TBL] [Abstract][Full Text] [Related]
31. Broadening the insecticidal spectrum of Lepidoptera-specific Bacillus thuringiensis strains by chromosomal integration of cry3A. Yue C; Sun M; Yu Z Biotechnol Bioeng; 2005 Aug; 91(3):296-303. PubMed ID: 15984034 [TBL] [Abstract][Full Text] [Related]
32. Cloning and characterization of two novel crystal protein genes, cry54Aa1 and cry30Fa1, from Bacillus thuringiensis strain BtMC28. Tan F; Zhu J; Tang J; Tang X; Wang S; Zheng A; Li P Curr Microbiol; 2009 Jun; 58(6):654-9. PubMed ID: 19280260 [TBL] [Abstract][Full Text] [Related]
33. Role of toxin activation on binding and pore formation activity of the Bacillus thuringiensis Cry3 toxins in membranes of Leptinotarsa decemlineata (Say). Rausell C; García-Robles I; Sánchez J; Muñoz-Garay C; Martínez-Ramírez AC; Real MD; Bravo A Biochim Biophys Acta; 2004 Jan; 1660(1-2):99-105. PubMed ID: 14757225 [TBL] [Abstract][Full Text] [Related]
34. Unveiling gene expression regulation of the Bacillus thuringiensis Cry3Aa toxin receptor ADAM10 by the potato dietary miR171c in Colorado potato beetle. Robles-Fort A; Pescador-Dionisio S; García-Robles I; Sentandreu V; Martínez-Ramírez AC; Real MD; Rausell C Pest Manag Sci; 2022 Sep; 78(9):3760-3768. PubMed ID: 34846789 [TBL] [Abstract][Full Text] [Related]
35. Potential of Cry10Aa and Cyt2Ba, Two Minority δ-endotoxins Produced by Valtierra-de-Luis D; Villanueva M; Lai L; Williams T; Caballero P Toxins (Basel); 2020 May; 12(6):. PubMed ID: 32485828 [No Abstract] [Full Text] [Related]
36. Influence of the 20-kDa protein from Bacillus thuringiensis ssp. israelensis on the rate of production of truncated Cry1C proteins. Rang C; Bes M; Lullien-Pellerin V; Wu D; Federici BA; Frutos R FEMS Microbiol Lett; 1996 Aug; 141(2-3):261-4. PubMed ID: 8768532 [TBL] [Abstract][Full Text] [Related]
37. Bacillus thuringiensis bel protein enhances the toxicity of Cry1Ac protein to Helicoverpa armigera larvae by degrading insect intestinal mucin. Fang S; Wang L; Guo W; Zhang X; Peng D; Luo C; Yu Z; Sun M Appl Environ Microbiol; 2009 Aug; 75(16):5237-43. PubMed ID: 19542344 [TBL] [Abstract][Full Text] [Related]
38. Efficient production of Bacillus thuringiensis Cry1AMod toxins under regulation of cry3Aa promoter and single cysteine mutations in the protoxin region. García-Gómez BI; Sánchez J; Martínez de Castro DL; Ibarra JE; Bravo A; Soberón M Appl Environ Microbiol; 2013 Nov; 79(22):6969-73. PubMed ID: 24014526 [TBL] [Abstract][Full Text] [Related]
39. [Characterization of Bacillus thuringiensis sigK disruption mutant and its influence on activation of cry3A promoter]. Du L; Wei J; Han L; Chen Z; Zhang J; Song F; Huang D Wei Sheng Wu Xue Bao; 2011 Sep; 51(9):1177-84. PubMed ID: 22126072 [TBL] [Abstract][Full Text] [Related]
40. Carboxy-terminal extension effects on crystal formation and insecticidal properties of Colorado potato beetle-active Bacillus thuringiensis delta-endotoxins. Naimov S; Martens-Uzunova E; Weemen-Hendriks M; Dukiandjiev S; Minkov I; de Maagd RA Mol Biotechnol; 2006 Mar; 32(3):185-96. PubMed ID: 16632885 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]