BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22085910)

  • 21. CLCA protein and chloride transport in canine retinal pigment epithelium.
    Loewen ME; Smith NK; Hamilton DL; Grahn BH; Forsyth GW
    Am J Physiol Cell Physiol; 2003 Nov; 285(5):C1314-21. PubMed ID: 12867361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dysfunction of the retinal pigment epithelium with age: increased iron decreases phagocytosis and lysosomal activity.
    Chen H; Lukas TJ; Du N; Suyeoka G; Neufeld AH
    Invest Ophthalmol Vis Sci; 2009 Apr; 50(4):1895-902. PubMed ID: 19151392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Apical and basal membrane ion transport mechanisms in bovine retinal pigment epithelium.
    Joseph DP; Miller SS
    J Physiol; 1991 Apr; 435():439-63. PubMed ID: 1722821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression and localization of the inwardly rectifying potassium channel Kir7.1 in native bovine retinal pigment epithelium.
    Yang D; Pan A; Swaminathan A; Kumar G; Hughes BA
    Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3178-85. PubMed ID: 12824269
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complement gene expression and regulation in mouse retina and retinal pigment epithelium/choroid.
    Luo C; Chen M; Xu H
    Mol Vis; 2011; 17():1588-97. PubMed ID: 21738388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional comparison of mouse slc26a6 anion exchanger with human SLC26A6 polypeptide variants: differences in anion selectivity, regulation, and electrogenicity.
    Chernova MN; Jiang L; Friedman DJ; Darman RB; Lohi H; Kere J; Vandorpe DH; Alper SL
    J Biol Chem; 2005 Mar; 280(9):8564-80. PubMed ID: 15548529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preliminary investigation into the expression of proton-coupled oligopeptide transporters in neural retina and retinal pigment epithelium (RPE): lack of functional activity in RPE plasma membranes.
    Ocheltree SM; Keep RF; Shen H; Yang D; Hughes BA; Smith DE
    Pharm Res; 2003 Sep; 20(9):1364-72. PubMed ID: 14567629
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Furosemide-sensitive Cl transport in bovine retinal pigment epithelium.
    Frambach DA; Valentine JL; Weiter JJ
    Invest Ophthalmol Vis Sci; 1989 Oct; 30(10):2271-4. PubMed ID: 2793365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compartmental analysis of taurine transport to the outer retina in the bovine eye.
    Hillenkamp J; Hussain AA; Jackson TL; Constable PA; Cunningham JR; Marshall J
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4099-105. PubMed ID: 15505061
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A renal-like organic anion transport system in the ciliary epithelium of the bovine and human eye.
    Lee J; Shahidullah M; Hotchkiss A; Coca-Prados M; Delamere NA; Pelis RM
    Mol Pharmacol; 2015 Apr; 87(4):697-705. PubMed ID: 25661037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell-deposited matrix improves retinal pigment epithelium survival on aged submacular human Bruch's membrane.
    Sugino IK; Gullapalli VK; Sun Q; Wang J; Nunes CF; Cheewatrakoolpong N; Johnson AC; Degner BC; Hua J; Liu T; Chen W; Li H; Zarbin MA
    Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1345-58. PubMed ID: 21398292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Furosemide-sensitive Cl transport in embryonic chicken retinal pigment epithelium.
    Frambach DA; Misfeldt DS
    Am J Physiol; 1983 Jun; 244(6):F679-85. PubMed ID: 6859259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of anoctamins in retinal pigment epithelium (RPE).
    Schreiber R; Kunzelmann K
    Pflugers Arch; 2016 Nov; 468(11-12):1921-1929. PubMed ID: 27822608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acidification stimulates chloride and fluid absorption across frog retinal pigment epithelium.
    Edelman JL; Lin H; Miller SS
    Am J Physiol; 1994 Apr; 266(4 Pt 1):C946-56. PubMed ID: 8178967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of acute and chronic aldosterone exposure on the retinal pigment epithelium-choroid complex in rodents.
    Canonica J; Mehanna C; Bonnard B; Jonet L; Gelize E; Jais JP; Jaisser F; Zhao M; Behar-Cohen F
    Exp Eye Res; 2019 Oct; 187():107747. PubMed ID: 31394103
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Filter-cultured ARPE-19 cells as outer blood-retinal barrier model.
    Mannermaa E; Reinisalo M; Ranta VP; Vellonen KS; Kokki H; Saarikko A; Kaarniranta K; Urtti A
    Eur J Pharm Sci; 2010 Jul; 40(4):289-96. PubMed ID: 20385230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of subretinal fluid: experimental and clinical studies.
    Marmor MF
    Eye (Lond); 1990; 4 ( Pt 2)():340-4. PubMed ID: 2199242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of beta-carotene 15,15' monooxygenase in retina and RPE-choroid.
    Bhatti RA; Yu S; Boulanger A; Fariss RN; Guo Y; Bernstein SL; Gentleman S; Redmond TM
    Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):44-9. PubMed ID: 12506054
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Minimal effects of VEGF and anti-VEGF drugs on the permeability or selectivity of RPE tight junctions.
    Peng S; Adelman RA; Rizzolo LJ
    Invest Ophthalmol Vis Sci; 2010 Jun; 51(6):3216-25. PubMed ID: 20042644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AE4 is a DIDS-sensitive Cl(-)/HCO(-)(3) exchanger in the basolateral membrane of the renal CCD and the SMG duct.
    Ko SB; Luo X; Hager H; Rojek A; Choi JY; Licht C; Suzuki M; Muallem S; Nielsen S; Ishibashi K
    Am J Physiol Cell Physiol; 2002 Oct; 283(4):C1206-18. PubMed ID: 12225984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.