BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 22085927)

  • 1. Human tRNA genes function as chromatin insulators.
    Raab JR; Chiu J; Zhu J; Katzman S; Kurukuti S; Wade PA; Haussler D; Kamakaka RT
    EMBO J; 2012 Jan; 31(2):330-50. PubMed ID: 22085927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. tDNA insulators and the emerging role of TFIIIC in genome organization.
    Van Bortle K; Corces VG
    Transcription; 2012; 3(6):277-84. PubMed ID: 22889843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TFIIIC-based chromatin insulators through eukaryotic evolution.
    Sizer RE; Chahid N; Butterfield SP; Donze D; Bryant NJ; White RJ
    Gene; 2022 Aug; 835():146533. PubMed ID: 35623477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TFIIIC binding sites function as both heterochromatin barriers and chromatin insulators in Saccharomyces cerevisiae.
    Simms TA; Dugas SL; Gremillion JC; Ibos ME; Dandurand MN; Toliver TT; Edwards DJ; Donze D
    Eukaryot Cell; 2008 Dec; 7(12):2078-86. PubMed ID: 18849469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TFIIIC bound DNA elements in nuclear organization and insulation.
    Kirkland JG; Raab JR; Kamakaka RT
    Biochim Biophys Acta; 2013; 1829(3-4):418-24. PubMed ID: 23000638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MIR retrotransposon sequences provide insulators to the human genome.
    Wang J; Vicente-García C; Seruggia D; Moltó E; Fernandez-Miñán A; Neto A; Lee E; Gómez-Skarmeta JL; Montoliu L; Lunyak VV; Jordan IK
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):E4428-37. PubMed ID: 26216945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription independent insulation at TFIIIC-dependent insulators.
    Valenzuela L; Dhillon N; Kamakaka RT
    Genetics; 2009 Sep; 183(1):131-48. PubMed ID: 19596900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene insulation. Part I: natural strategies in yeast and Drosophila.
    Amouyal M
    Biochem Cell Biol; 2010 Dec; 88(6):875-84. PubMed ID: 21102650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene insulation. Part II: natural strategies in vertebrates.
    Amouyal M
    Biochem Cell Biol; 2010 Dec; 88(6):885-98. PubMed ID: 21102651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A unique nucleosome arrangement, maintained actively by chromatin remodelers facilitates transcription of yeast tRNA genes.
    Kumar Y; Bhargava P
    BMC Genomics; 2013 Jun; 14():402. PubMed ID: 23767421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulators: exploiting transcriptional and epigenetic mechanisms.
    Gaszner M; Felsenfeld G
    Nat Rev Genet; 2006 Sep; 7(9):703-13. PubMed ID: 16909129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic silencing of clustered tRNA genes in Arabidopsis.
    Hummel G; Berr A; Graindorge S; Cognat V; Ubrig E; Pflieger D; Molinier J; Drouard L
    Nucleic Acids Res; 2020 Oct; 48(18):10297-10312. PubMed ID: 32941623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chromatin insulator-like element in the herpes simplex virus type 1 latency-associated transcript region binds CCCTC-binding factor and displays enhancer-blocking and silencing activities.
    Amelio AL; McAnany PK; Bloom DC
    J Virol; 2006 Mar; 80(5):2358-68. PubMed ID: 16474142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Requirement of Nhp6 proteins for transcription of a subset of tRNA genes and heterochromatin barrier function in Saccharomyces cerevisiae.
    Braglia P; Dugas SL; Donze D; Dieci G
    Mol Cell Biol; 2007 Mar; 27(5):1545-57. PubMed ID: 17178828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications.
    Marck C; Kachouri-Lafond R; Lafontaine I; Westhof E; Dujon B; Grosjean H
    Nucleic Acids Res; 2006; 34(6):1816-35. PubMed ID: 16600899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protecting a transgene expression from the HAC-based vector by different chromatin insulators.
    Lee NC; Kononenko AV; Lee HS; Tolkunova EN; Liskovykh MA; Masumoto H; Earnshaw WC; Tomilin AN; Larionov V; Kouprina N
    Cell Mol Life Sci; 2013 Oct; 70(19):3723-37. PubMed ID: 23677492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. tRNA Genes Affect Chromosome Structure and Function via Local Effects.
    Hamdani O; Dhillon N; Hsieh TS; Fujita T; Ocampo J; Kirkland JG; Lawrimore J; Kobayashi TJ; Friedman B; Fulton D; Wu KY; Chereji RV; Oki M; Bloom K; Clark DJ; Rando OJ; Kamakaka RT
    Mol Cell Biol; 2019 Apr; 39(8):. PubMed ID: 30718362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implication of a new function of human tDNAs in chromatin organization.
    Iwasaki Y; Ikemura T; Kurokawa K; Okada N
    Sci Rep; 2020 Oct; 10(1):17440. PubMed ID: 33060757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic discovery of potent chromatin insulators for human gene therapy.
    Liu M; Maurano MT; Wang H; Qi H; Song CZ; Navas PA; Emery DW; Stamatoyannopoulos JA; Stamatoyannopoulos G
    Nat Biotechnol; 2015 Feb; 33(2):198-203. PubMed ID: 25580597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topological organization and dynamic regulation of human tRNA genes during macrophage differentiation.
    Van Bortle K; Phanstiel DH; Snyder MP
    Genome Biol; 2017 Sep; 18(1):180. PubMed ID: 28931413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.