These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 2208596)
21. Sulfotransferase-mediated activation of 4-hydroxy- and 3,4-dihydroxy-3,4-dihydrocyclopenta[c,d]pyrene, major metabolites of cyclopenta[c,d]pyrene. Surh YJ; Kwon H; Tannenbaum SR Cancer Res; 1993 Mar; 53(5):1017-22. PubMed ID: 8439948 [TBL] [Abstract][Full Text] [Related]
22. Metabolism of 7,8-dihydrobenzo(a)pyrene by rat liver microsomal enzymes and mutagenicity of metabolites. Chiu PL; Yang SK Cancer Res; 1986 Oct; 46(10):5084-94. PubMed ID: 3756866 [TBL] [Abstract][Full Text] [Related]
23. 2,3-epoxy-4-hydroxynonanal, a potential lipid peroxidation product for etheno adduct formation, is not a substrate of human epoxide hydrolase. Chen HJ; Gonzalez FJ; Shou M; Chung FL Carcinogenesis; 1998 May; 19(5):939-43. PubMed ID: 9635886 [TBL] [Abstract][Full Text] [Related]
24. Comparison of epoxide and free-radical mechanisms for activation of benzo[a]pyrene by Sprague-Dawley rat liver microsomes. Selkirk JK J Natl Cancer Inst; 1980 Apr; 64(4):771-4. PubMed ID: 6928990 [TBL] [Abstract][Full Text] [Related]
25. Peroxyl radical trapping and autoxidation reactions of alpha-tocopherol in lipid bilayers. Liebler DC; Kaysen KL; Burr JA Chem Res Toxicol; 1991; 4(1):89-93. PubMed ID: 1912305 [TBL] [Abstract][Full Text] [Related]
26. Regioselective and stereoselective metabolisms of pyrene and 1-bromopyrene by rat liver microsomes and effects of enzyme inducers. Shou M; Yang SK Drug Metab Dispos; 1988; 16(2):173-83. PubMed ID: 2898329 [TBL] [Abstract][Full Text] [Related]
27. Metabolic activation of racemic and enantiomeric trans-8, 9-dihydroxy-8,9-dihydrodibenzo[a,l]pyrene (dibenzo[def,p]chrysene) to dibenzo[a,l]pyrene-bis-dihydrodiols by induced rat liver microsomes and a recombinant human P450 1A1 system: the role of the K-region-derived metabolic intermediates in the formation of dibenzo[a,l]pyrene-DNA adducts. Nesnow S; Davis C; Padgett W; George M; Lambert G; Meyers F; Allison J; Adams L; King LC Chem Res Toxicol; 1998 Dec; 11(12):1596-607. PubMed ID: 9860506 [TBL] [Abstract][Full Text] [Related]
28. Roles of individual human cytochrome P-450 enzymes in the bioactivation of benzo(a)pyrene, 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, and other dihydrodiol derivatives of polycyclic aromatic hydrocarbons. Shimada T; Martin MV; Pruess-Schwartz D; Marnett LJ; Guengerich FP Cancer Res; 1989 Nov; 49(22):6304-12. PubMed ID: 2509067 [TBL] [Abstract][Full Text] [Related]
29. Microsomal metabolism of cyclopenta[cd]pyrene. Characterization of new metabolites and their mechanism of formation. Sahali Y; Kwon H; Skipper PL; Tannenbaum SR Chem Res Toxicol; 1992; 5(2):157-62. PubMed ID: 1643245 [TBL] [Abstract][Full Text] [Related]
30. In vitro and in vivo metabolism of the carcinogen 4-nitropyrene. Upadhyaya P; Von Tungeln LS; Fu PP; el-Bayoumy K Chem Res Toxicol; 1994; 7(5):690-5. PubMed ID: 7841349 [TBL] [Abstract][Full Text] [Related]
32. C-phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro. Bhat VB; Madyastha KM Biochem Biophys Res Commun; 2000 Aug; 275(1):20-5. PubMed ID: 10944434 [TBL] [Abstract][Full Text] [Related]
33. How lipid unsaturation, peroxyl radical partitioning, and chromanol lipophilic tail affect the antioxidant activity of α-tocopherol: direct visualization via high-throughput fluorescence studies conducted with fluorogenic α-tocopherol analogues. Krumova K; Friedland S; Cosa G J Am Chem Soc; 2012 Jun; 134(24):10102-13. PubMed ID: 22568598 [TBL] [Abstract][Full Text] [Related]
34. Mutagenicity of the bay-region diol-epoxides and other benzo-ring derivatives of dibenzo(a,h)pyrene and dibenzo(a,i)pyrene. Wood AW; Chang RL; Levin W; Ryan DE; Thomas PE; Lehr RE; Kumar S; Sardella DJ; Boger E; Yagi H; Sayer JM; Jerina DM; Conney AH Cancer Res; 1981 Jul; 41(7):2589-97. PubMed ID: 7018665 [TBL] [Abstract][Full Text] [Related]
35. Heme-catalyzed degradation of linoleate 9-hydroperoxide (9-HPODE) forms two allylic epoxy-ketones via a proposed pseudo-symmetrical diepoxy radical intermediate. Noguchi S; Boeglin WE; Porter NA; Brash AR Free Radic Res; 2024; 58(6-7):430-438. PubMed ID: 39099129 [TBL] [Abstract][Full Text] [Related]
36. Microsomal metabolism of 1-nitrobenzo[e]pyrene to a highly mutagenic K-region dihydrodiol. Fu PP; Heflich RH; Von Tungeln LS; Miranda HZ; Evans FE Carcinogenesis; 1988 Jun; 9(6):951-8. PubMed ID: 3286032 [TBL] [Abstract][Full Text] [Related]
37. Identification of mutagenic metabolites of indeno[1,2,3-cd]pyrene formed in vitro with rat liver enzymes. Rice JE; Coleman DT; Hosted TJ; LaVoie EJ; McCaustland DJ; Wiley JC Cancer Res; 1985 Nov; 45(11 Pt 1):5421-5. PubMed ID: 4053016 [TBL] [Abstract][Full Text] [Related]
38. Cytochrome P450-dependent transformations of 15R- and 15S-hydroperoxyeicosatetraenoic acids: stereoselective formation of epoxy alcohol products. Chang MS; Boeglin WE; Guengerich FP; Brash AR Biochemistry; 1996 Jan; 35(2):464-71. PubMed ID: 8555216 [TBL] [Abstract][Full Text] [Related]
39. Activation of benzo[a]pyrene and aflatoxin B1 to mutagenic chemical species by microsomal preparations from rat liver and small intestine in relation to microsomal epoxide hydrolase. Walters JM; Combes RD Mutagenesis; 1986 Jan; 1(1):45-8. PubMed ID: 3125402 [TBL] [Abstract][Full Text] [Related]
40. Prostaglandin H synthase-catalyzed oxidation of all-trans- and 13-cis-retinoic acid to carbon-centered and peroxyl radical intermediates. Freyaldenhoven MA; Lloyd RV; Samokyszyn VM Chem Res Toxicol; 1996 Jun; 9(4):677-81. PubMed ID: 8831809 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]