These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 22086)
41. Restriction of the lateral motion of band 3 in the erythrocyte membrane by the cytoskeletal network: dependence on spectrin association state. Tsuji A; Ohnishi S Biochemistry; 1986 Oct; 25(20):6133-9. PubMed ID: 3790510 [TBL] [Abstract][Full Text] [Related]
42. The spectrin membrane skeleton of normal and abnormal human erythrocytes: a review. Goodman SR; Shiffer K Am J Physiol; 1983 Mar; 244(3):C121-41. PubMed ID: 6338732 [TBL] [Abstract][Full Text] [Related]
43. Effects of cholesterol on lipid organization in human erythrocyte membrane. Hui SW; Stewart CM; Carpenter MP; Stewart TP J Cell Biol; 1980 May; 85(2):283-91. PubMed ID: 7372709 [TBL] [Abstract][Full Text] [Related]
44. Involvement of spectrin in membrane fusion: induction of fusion in human erythrocyte ghosts by proteolytic enzymes and its inhibition by antispectrin antibody. Lalazar A; Loyter A Proc Natl Acad Sci U S A; 1979 Jan; 76(1):318-22. PubMed ID: 218196 [TBL] [Abstract][Full Text] [Related]
45. Effects of intramembrane particle aggregation on erythrocyte membrane fluidity: an electron spin resonance study in normal and in dystrophic subjects. Ferretti G; Tangorra A; Curatola G Exp Cell Res; 1990 Nov; 191(1):14-21. PubMed ID: 2171966 [TBL] [Abstract][Full Text] [Related]
46. Actin in erythrocyte ghosts and its association with spectrin. Evidence for a nonfilamentous form of these two molecules in situ. Tilney LG; Detmers P J Cell Biol; 1975 Sep; 66(3):508-20. PubMed ID: 1099105 [TBL] [Abstract][Full Text] [Related]
47. pH-induced denaturation of spectrin changes the interaction of membrane proteins in erythrocyte ghosts. Biochemical and electron microscopic evidence. Baumann E; Linss W; Fröhner M; Stoya G; Richter W Ann Anat; 1994 Jan; 176(1):93-9. PubMed ID: 8304598 [TBL] [Abstract][Full Text] [Related]
48. Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane. Haest CW; Plasa G; Kamp D; Deuticke B Biochim Biophys Acta; 1978 May; 509(1):21-32. PubMed ID: 647006 [TBL] [Abstract][Full Text] [Related]
49. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Branton D; Cohen CM; Tyler J Cell; 1981 Apr; 24(1):24-32. PubMed ID: 6453651 [No Abstract] [Full Text] [Related]
50. Appearance and distribution of surface proteins of the human erythrocyte membrane. An electron microscope and immunochemical labeling study. Shotton D; Thompson K; Wofsy L; Branton D J Cell Biol; 1978 Feb; 76(2):512-31. PubMed ID: 10605454 [TBL] [Abstract][Full Text] [Related]
51. The role of spectrin in erythrocyte membrane-stimulated actin polymerisation. Cohen CM; Branton D Nature; 1979 May; 279(5709):163-5. PubMed ID: 440423 [No Abstract] [Full Text] [Related]
52. Atomic force microscopy of the erythrocyte membrane skeleton. Swihart AH; Mikrut JM; Ketterson JB; Macdonald RC J Microsc; 2001 Dec; 204(Pt 3):212-25. PubMed ID: 11903798 [TBL] [Abstract][Full Text] [Related]
53. Involvement of cytoskeletal proteins in the barrier function of the human erythrocyte membrane. III. Permeability of spectrin-depleted inside-out membrane vesicles to hydrophilic nonelectrolytes. Formation of leaks by chemical or enzymatic modification of membrane proteins. Klonk S; Deuticke B Biochim Biophys Acta; 1992 Apr; 1106(1):143-50. PubMed ID: 1581327 [TBL] [Abstract][Full Text] [Related]
54. The mobility of intramembrane particles in non-haemolysed human erythrocytes. Factors affecting acridine-orange-induced particle aggregation. Lelkes G; Fodor I; Lelkes G; Hollán SR J Cell Sci; 1986 Dec; 86():57-67. PubMed ID: 3654782 [TBL] [Abstract][Full Text] [Related]
55. In vitro formation of a complex between cytoskeletal proteins of the human erythrocyte. Ungewickell E; Bennett PM; Calvert R; Ohanian V; Gratzer WB Nature; 1979 Aug; 280(5725):811-4. PubMed ID: 471052 [TBL] [Abstract][Full Text] [Related]
56. Protein-dependent lipid lateral phase separation as a mechanism of human erythrocyte ghost resealing. Minetti M; Ceccarini M J Cell Biochem; 1982; 19(1):59-75. PubMed ID: 6181083 [TBL] [Abstract][Full Text] [Related]
58. Release of spectrin-containing vesicles from human erythrocyte ghosts by dimyristoylphosphatidylcholine. Yamaguchi T; Yamamoto M; Kimoto E J Biochem; 1996 Jan; 119(1):95-9. PubMed ID: 8907181 [TBL] [Abstract][Full Text] [Related]
59. The cytoskeletal system of nucleated erythrocytes. I. Composition and function of major elements. Cohen WD; Bartelt D; Jaeger R; Langford G; Nemhauser I J Cell Biol; 1982 Jun; 93(3):828. PubMed ID: 6889600 [TBL] [Abstract][Full Text] [Related]
60. Ultrastructure of the intact skeleton of the human erythrocyte membrane. Shen BW; Josephs R; Steck TL J Cell Biol; 1986 Mar; 102(3):997-1006. PubMed ID: 2936753 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]