These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22086017)

  • 1. Optimization design of diffractive phase elements for beam shaping.
    Yu X; Chen KQ; Zhang Y
    Appl Opt; 2011 Nov; 50(31):5938-43. PubMed ID: 22086017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffractive phase elements for beam shaping: a new design method.
    Tan X; Gu BY; Yang GZ; Dong BZ
    Appl Opt; 1995 Mar; 34(8):1314-20. PubMed ID: 21037662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated diffractive andrefractive elements for spectrum shaping.
    Noach S; Lewis A; Arieli Y; Eisenberg N
    Appl Opt; 1996 Jul; 35(19):3635-9. PubMed ID: 21102758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffractive-phase-element design that implements several optical functions.
    Gu BY; Yang GZ; Dong BZ; Chang MP; Ersoy OK
    Appl Opt; 1995 May; 34(14):2564-70. PubMed ID: 21052394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of diffractive phase elements that produce focal annuli: a new method.
    Zhang GQ; Gu BY; Yang GZ
    Appl Opt; 1995 Dec; 34(35):8110-5. PubMed ID: 21068925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iterative algorithm for the design of diffractive phase elements for laser beam shaping.
    Liu JS; Taghizadeh MR
    Opt Lett; 2002 Aug; 27(16):1463-5. PubMed ID: 18026480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beam shaping using Gaussian beam modes.
    Lavelle J; O'Sullivan C
    J Opt Soc Am A Opt Image Sci Vis; 2010 Feb; 27(2):350-7. PubMed ID: 20126247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design concept for diffractive elements shaping partially coherent laser beams.
    Schäfer D
    J Opt Soc Am A Opt Image Sci Vis; 2001 Nov; 18(11):2915-22. PubMed ID: 11688882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the spatial frequency composition of the target pattern and the number of quantization levels in diffractive beam shaper design.
    Hsu KH; Lin HY
    Appl Opt; 2012 Jun; 51(16):3313-22. PubMed ID: 22695565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser beam shaping with polarization-selective diffractive phase elements.
    Liu J; Gu B
    Appl Opt; 2000 Jun; 39(18):3089-92. PubMed ID: 18345237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iterative algorithm for the design of free-space diffractive optical elements for fiber coupling.
    Thomson MJ; Liu J; Taghizadeh MR
    Appl Opt; 2004 Apr; 43(10):1996-9. PubMed ID: 15074404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-precision laser beam shaping using a binary-amplitude spatial light modulator.
    Liang J; Kohn RN; Becker MF; Heinzen DJ
    Appl Opt; 2010 Mar; 49(8):1323-30. PubMed ID: 20220887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper.
    Tauro S; Bañas A; Palima D; Glückstad J
    Opt Express; 2011 Apr; 19(8):7106-11. PubMed ID: 21503023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise design of two-dimensional diffractive optical elements for beam shaping.
    Qu W; Gu H; Tan Q; Jin G
    Appl Opt; 2015 Jul; 54(21):6521-5. PubMed ID: 26367838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vector iterative algorithm for the design of diffractive optical elements applied to uniform illumination.
    Zhao Y; Li YP; Zhou QG
    Opt Lett; 2004 Apr; 29(7):664-6. PubMed ID: 15072351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double diffractive optical element system for near-field shaping.
    Herrera-Fernandez JM; Sanchez-Brea LM
    Appl Opt; 2011 Aug; 50(23):4587-93. PubMed ID: 21833136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and fabrication of a diffractive phase element for wavelength demultiplexing and spatial focusing simultaneously.
    Dong BZ; Zhang GQ; Yang GZ; Gu BY; Zheng SH; Li DH; Chen YS; Cui XM; Chen ML; Liu HD
    Appl Opt; 1996 Dec; 35(35):6859-64. PubMed ID: 21151283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime.
    Di Fabrizio E; Cojoc D; Emiliani V; Cabrini S; Coppey-Moisan M; Ferrari E; Garbin V; Altissimo M
    Microsc Res Tech; 2004 Nov; 65(4-5):252-62. PubMed ID: 15630683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size.
    Ma H; Liu Z; Jiang P; Xu X; Du S
    Opt Express; 2011 Jul; 19(14):13105-17. PubMed ID: 21747463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of diffractive optical elements for the fractional Fourier transform domain: phase-space approach.
    Testorf M
    Appl Opt; 2006 Jan; 45(1):76-82. PubMed ID: 16422322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.