These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 22086049)

  • 1. Enhanced absorptive characteristics of metal nanoparticle-coated silicon nanowires for solar cell applications.
    Zhou K; Jee SW; Guo Z; Liu S; Lee JH
    Appl Opt; 2011 Nov; 50(31):G63-8. PubMed ID: 22086049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles.
    Tsai FJ; Wang JY; Huang JJ; Kiang YW; Yang CC
    Opt Express; 2010 Jun; 18 Suppl 2():A207-20. PubMed ID: 20588590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon resonance enhanced optical absorption in inverted polymer/fullerene solar cells with metal nanoparticle-doped solution-processable TiO2 layer.
    Xu MF; Zhu XZ; Shi XB; Liang J; Jin Y; Wang ZK; Liao LS
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2935-42. PubMed ID: 23510437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge-selective surface-enhanced Raman scattering using silver and gold nanoparticles deposited on silicon-carbon core-shell nanowires.
    Baik SY; Cho YJ; Lim YR; Im HS; Jang DM; Myung Y; Park J; Kang HS
    ACS Nano; 2012 Mar; 6(3):2459-70. PubMed ID: 22314252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional Ag nanoparticle decorated Si nanowires for sensing, photocatalysis and light emission applications.
    Ghosh R; Ghosh J; Das R; Mawlong LPL; Paul KK; Giri PK
    J Colloid Interface Sci; 2018 Dec; 532():464-473. PubMed ID: 30099309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A waferscale Si wire solar cell using radial and bulk p-n junctions.
    Jung JY; Guo Z; Jee SW; Um HD; Park KT; Hyun MS; Yang JM; Lee JH
    Nanotechnology; 2010 Nov; 21(44):445303. PubMed ID: 20935359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic layers based on Au-nanoparticle-doped TiO2 for optoelectronics: structural and optical properties.
    Pedrueza E; Sancho-Parramon J; Bosch S; Valdés JL; Martinez-Pastor JP
    Nanotechnology; 2013 Feb; 24(6):065202. PubMed ID: 23339892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous integration of InGaAs nanowires on the rear surface of Si solar cells for efficiency enhancement.
    Shin JC; Mohseni PK; Yu KJ; Tomasulo S; Montgomery KH; Lee ML; Rogers JA; Li X
    ACS Nano; 2012 Dec; 6(12):11074-9. PubMed ID: 23128184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical metal/semiconductor nanostructure for efficient water splitting.
    Thiyagarajan P; Ahn HJ; Lee JS; Yoon JC; Jang JH
    Small; 2013 Jul; 9(13):2341-7. PubMed ID: 23292824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of nanoporous silicon layer to reduce the optical losses of crystalline silicon solar cells.
    Lee S; Lee E
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3713-6. PubMed ID: 18047043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-enhanced photocatalytic properties of Cu2O nanowire-Au nanoparticle assemblies.
    Pan Y; Deng S; Polavarapu L; Gao N; Yuan P; Sow CH; Xu QH
    Langmuir; 2012 Aug; 28(33):12304-10. PubMed ID: 22813236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A strong antireflective solar cell prepared by tapering silicon nanowires.
    Jung JY; Guo Z; Jee SW; Um HD; Park KT; Lee JH
    Opt Express; 2010 Sep; 18 Suppl 3():A286-92. PubMed ID: 21165058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer.
    Wang JY; Tsai FJ; Huang JJ; Chen CY; Li N; Kiang YW; Yang CC
    Opt Express; 2010 Feb; 18(3):2682-94. PubMed ID: 20174098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized surface plasmon resonance with broadband ultralow reflectivity from metal nanoparticles on glass and silicon subwavelength structures.
    Tan CL; Jang SJ; Lee YT
    Opt Express; 2012 Jul; 20(16):17448-55. PubMed ID: 23038297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle-coated n-ZnO/p-Si photodiodes with improved photoresponsivities and acceptance angles for potential solar cell applications.
    Chen CP; Lin PH; Chen LY; Ke MY; Cheng YW; Huang J
    Nanotechnology; 2009 Jun; 20(24):245204. PubMed ID: 19468172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Sb₂S₃ Hybrid Solar Cells Based on Embedded Photoelectrodes of Ag Nanowires-Au Nanoparticles Composite.
    Kim KP; Hwang DK; Woo SH; Kim DH
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6520-6523. PubMed ID: 29677825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The story of a monodisperse gold nanoparticle: Au25L18.
    Parker JF; Fields-Zinna CA; Murray RW
    Acc Chem Res; 2010 Sep; 43(9):1289-96. PubMed ID: 20597498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving Efficiency of Multicrystalline Silicon and CIGS Solar Cells by Incorporating Metal Nanoparticles.
    Jeng MJ; Chen ZY; Xiao YL; Chang LB; Ao J; Sun Y; Popko E; Jacak W; Chow L
    Materials (Basel); 2015 Oct; 8(10):6761-6771. PubMed ID: 28793599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled growth and luminescence of crystalline Si/SiOx core-shell nanowires.
    Kim S; Kim CO; Shin DH; Hong SH; Kim MC; Kim J; Choi SH; Kim T; Elliman RG; Kim YM
    Nanotechnology; 2010 May; 21(20):205601. PubMed ID: 20413841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure.
    Qi J; Dang X; Hammond PT; Belcher AM
    ACS Nano; 2011 Sep; 5(9):7108-16. PubMed ID: 21815674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.