These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22086086)

  • 21. A critical review on thermal conductivity enhancement of graphene-based nanofluids.
    Pavía M; Alajami K; Estellé P; Desforges A; Vigolo B
    Adv Colloid Interface Sci; 2021 Aug; 294():102452. PubMed ID: 34139659
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Ag nanoparticle addition and ultrasonic treatment on a stable TiO2 nanofluid.
    Chakraborty S; Mukherjee J; Manna M; Ghosh P; Das S; Denys MB
    Ultrason Sonochem; 2012 Sep; 19(5):1044-50. PubMed ID: 22421063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis.
    Iida H; Takayanagi K; Nakanishi T; Osaka T
    J Colloid Interface Sci; 2007 Oct; 314(1):274-80. PubMed ID: 17568605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanofluids Containing γ-Fe2O3 Nanoparticles and Their Heat Transfer Enhancements.
    Guo SZ; Li Y; Jiang JS; Xie HQ
    Nanoscale Res Lett; 2010 May; 5(7):1222-7. PubMed ID: 20596461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-step synthesis of monodisperse, water-soluble ultra-small Fe3O4 nanoparticles for potential bio-application.
    Shen LH; Bao JF; Wang D; Wang YX; Chen ZW; Ren L; Zhou X; Ke XB; Chen M; Yang AQ
    Nanoscale; 2013 Mar; 5(5):2133-41. PubMed ID: 23385623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles.
    Prucek R; Tuček J; Kilianová M; Panáček A; Kvítek L; Filip J; Kolář M; Tománková K; Zbořil R
    Biomaterials; 2011 Jul; 32(21):4704-13. PubMed ID: 21507482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles.
    He H; Gao C
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3201-10. PubMed ID: 20958021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-aqueous synthesis of water-dispersible Fe3O4-Ca3(PO4)2 core-shell nanoparticles.
    Liu H; Wu J; Min JH; Hou P; Song AY; Kim YK
    Nanotechnology; 2011 Feb; 22(5):055701. PubMed ID: 21178225
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Review on thermal properties of nanofluids: Recent developments.
    Angayarkanni SA; Philip J
    Adv Colloid Interface Sci; 2015 Nov; 225():146-76. PubMed ID: 26391519
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal Conductivity Enhancement of Metal Oxide Nanofluids: A Critical Review.
    Yasmin H; Giwa SO; Noor S; Sharifpur M
    Nanomaterials (Basel); 2023 Feb; 13(3):. PubMed ID: 36770558
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sonochemical synthesis of amorphous nanoscopic iron(III) oxide from Fe(acac)3.
    Pinkas J; Reichlova V; Zboril R; Moravec Z; Bezdicka P; Matejkova J
    Ultrason Sonochem; 2008 Mar; 15(3):257-64. PubMed ID: 17507278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Is metal nanofluid reliable as heat carrier?
    Nine MJ; Chung H; Tanshen MR; Osman NA; Jeong H
    J Hazard Mater; 2014 May; 273():183-91. PubMed ID: 24735805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of Nanofluids in Improving the Performance of Double-Pipe Heat Exchangers-A Critical Review.
    Louis SP; Ushak S; Milian Y; Nemś M; Nemś A
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlling the size of magnetic nanoparticles using pluronic block copolymer surfactants.
    Lai JI; Shafi KV; Ulman A; Loos K; Lee Y; Vogt T; Lee WL; Ong NP; Estournès C
    J Phys Chem B; 2005 Jan; 109(1):15-8. PubMed ID: 16850974
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intriguingly high thermal conductivity increment for CuO nanowires contained nanofluids with low viscosity.
    Zhu D; Wang L; Yu W; Xie H
    Sci Rep; 2018 Mar; 8(1):5282. PubMed ID: 29588467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid).
    Amrollahi A; Hamidi AA; Rashidi AM
    Nanotechnology; 2008 Aug; 19(31):315701. PubMed ID: 21828793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal Conductivity and Viscosity: Review and Optimization of Effects of Nanoparticles.
    Apmann K; Fulmer R; Soto A; Vafaei S
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33800374
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation of stable magnetic nanofluids containing Fe3O4@PPy nanoparticles by a novel one-pot route.
    Zhao B; Nan Z
    Nanoscale Res Lett; 2011 Mar; 6(1):230. PubMed ID: 21711771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and properties of copper-oil-based nanofluids.
    Li D; Xie W; Fang W
    Nanoscale Res Lett; 2011 May; 6(1):373. PubMed ID: 21711900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Solvothermal Synthesis of TiO₂ Nanoparticles in a Non-Polar Medium to Prepare Highly Stable Nanofluids with Improved Thermal Properties.
    Aguilar T; Carrillo-Berdugo I; Gómez-Villarejo R; Gallardo JJ; Martínez-Merino P; Piñero JC; Alcántara R; Fernández-Lorenzo C; Navas J
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30309047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.