BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 22086167)

  • 21. Remodelling of continuously distributed collagen fibres in soft connective tissues.
    Driessen NJ; Peters GW; Huyghe JM; Bouten CV; Baaijens FP
    J Biomech; 2003 Aug; 36(8):1151-8. PubMed ID: 12831741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Asymptomatic carotid artery stenosis: identification of subgroups with different underlying plaque characteristics.
    van Lammeren GW; den Hartog AG; Pasterkamp G; Vink A; de Vries JP; Moll FL; de Borst GJ
    Eur J Vasc Endovasc Surg; 2012 Jun; 43(6):632-6. PubMed ID: 22507923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of mechanical indicators of carotid plaque vulnerability: Geometrical curvature metric, plaque stresses and damage in tissue fibres.
    Ghasemi M; Nolan DR; Lally C
    J Mech Behav Biomed Mater; 2020 Mar; 103():103573. PubMed ID: 32090902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A methodology to analyze changes in lipid core and calcification onto fibrous cap vulnerability: the human atherosclerotic carotid bifurcation as an illustratory example.
    Kiousis DE; Rubinigg SF; Auer M; Holzapfel GA
    J Biomech Eng; 2009 Dec; 131(12):121002. PubMed ID: 20524725
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional profile of activated dendritic cells in unstable atherosclerotic plaque.
    Erbel C; Sato K; Meyer FB; Kopecky SL; Frye RL; Goronzy JJ; Weyand CM
    Basic Res Cardiol; 2007 Mar; 102(2):123-32. PubMed ID: 17136419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of the lattice Boltzmann model to simulated stenosis growth in a two-dimensional carotid artery.
    Boyd J; Buick J; Cosgrove JA; Stansell P
    Phys Med Biol; 2005 Oct; 50(20):4783-96. PubMed ID: 16204872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A volumetric model for growth of arterial walls with arbitrary geometry and loads.
    Rodríguez J; Goicolea JM; Gabaldón F
    J Biomech; 2007; 40(5):961-71. PubMed ID: 16797020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel computational remodelling algorithm for the probabilistic evolution of collagen fibre dispersion in biaxially strained vascular tissue.
    Çoban G; Çelebi MS
    Math Med Biol; 2017 Dec; 34(4):433-467. PubMed ID: 27614761
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tensile and compressive properties of fresh human carotid atherosclerotic plaques.
    Maher E; Creane A; Sultan S; Hynes N; Lally C; Kelly DJ
    J Biomech; 2009 Dec; 42(16):2760-7. PubMed ID: 19766226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carotid artery mechanical properties and stresses quantified using in vivo data from normotensive and hypertensive humans.
    Masson I; Beaussier H; Boutouyrie P; Laurent S; Humphrey JD; Zidi M
    Biomech Model Mechanobiol; 2011 Dec; 10(6):867-82. PubMed ID: 21207095
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An investigation into the role of different constituents in damage accumulation in arterial tissue and constitutive model development.
    Ghasemi M; Nolan DR; Lally C
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1757-1769. PubMed ID: 30058051
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Towards an orientation-distribution-based multi-scale approach for remodelling biological tissues.
    Menzel A; Harrysson M; Ristinmaa M
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):505-24. PubMed ID: 19230147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preliminary study of hemodynamic distribution in patient-specific stenotic carotid bifurcation by image-based computational fluid dynamics.
    Xue YJ; Gao PY; Duan Q; Lin Y; Dai CB
    Acta Radiol; 2008 Jun; 49(5):558-65. PubMed ID: 18568543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MRI-based quantification of outflow boundary conditions for computational fluid dynamics of stenosed human carotid arteries.
    Groen HC; Simons L; van den Bouwhuijsen QJ; Bosboom EM; Gijsen FJ; van der Giessen AG; van de Vosse FN; Hofman A; van der Steen AF; Witteman JC; van der Lugt A; Wentzel JJ
    J Biomech; 2010 Aug; 43(12):2332-8. PubMed ID: 20627249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental determination of circumferential properties of fresh carotid artery plaques.
    Lawlor MG; O'Donnell MR; O'Connell BM; Walsh MT
    J Biomech; 2011 Jun; 44(9):1709-15. PubMed ID: 21497353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visual analysis or semi-automated gray-scale-based color mapping of the carotid plaque: which method correlates the best with the presence of cerebrovascular symptoms and/or lesions on MRI?
    Momjian I; Momjian S; Albanese S; Comelli M; Lovblad K; Sztajzel R
    J Neuroimaging; 2009 Apr; 19(2):119-26. PubMed ID: 19018954
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational models to predict stenosis growth in carotid arteries: which is the role of boundary conditions?
    Balossino R; Pennati G; Migliavacca F; Formaggia L; Veneziani A; Tuveri M; Dubini G
    Comput Methods Biomech Biomed Engin; 2009 Feb; 12(1):113-23. PubMed ID: 18763157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Collagen fibre characterisation in arterial tissue under load using SALS.
    Gaul RT; Nolan DR; Lally C
    J Mech Behav Biomed Mater; 2017 Nov; 75():359-368. PubMed ID: 28787646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modelling the mechanical properties of human skin: towards a 3D discrete fibre model.
    Jor JW; Nash MP; Nielsen PM; Hunter PJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6641-4. PubMed ID: 18003548
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated estimation of collagen fibre dispersion in the dermis and its contribution to the anisotropic behaviour of skin.
    Ní Annaidh A; Bruyère K; Destrade M; Gilchrist MD; Maurini C; Otténio M; Saccomandi G
    Ann Biomed Eng; 2012 Aug; 40(8):1666-78. PubMed ID: 22427196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.