These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22086340)

  • 41. Self-assembly of DNA rings from scaffold-free DNA tiles.
    Yang Y; Zhao Z; Zhang F; Nangreave J; Liu Y; Yan H
    Nano Lett; 2013 Apr; 13(4):1862-6. PubMed ID: 23530617
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Self-assembly and cathodoluminescence of microbelts from Cu-doped boron nitride nanotubes.
    Chen ZG; Zou J; Liu Q; Sun C; Liu G; Yao X; Li F; Wu B; Yuan XL; Sekiguchi T; Cheng HM; Lu GQ
    ACS Nano; 2008 Aug; 2(8):1523-32. PubMed ID: 19206355
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Folding DNA to create nanoscale shapes and patterns.
    Rothemund PW
    Nature; 2006 Mar; 440(7082):297-302. PubMed ID: 16541064
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Complex wireframe DNA nanostructures from simple building blocks.
    Wang W; Chen S; An B; Huang K; Bai T; Xu M; Bellot G; Ke Y; Xiang Y; Wei B
    Nat Commun; 2019 Mar; 10(1):1067. PubMed ID: 30842408
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Carbon nanotube-DNA nanoarchitectures and electronic functionality.
    Wang X; Liu F; Andavan GT; Jing X; Singh K; Yazdanpanah VR; Bruque N; Pandey RR; Lake R; Ozkan M; Wang KL; Ozkan CS
    Small; 2006 Nov; 2(11):1356-65. PubMed ID: 17192987
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Triangulated Wireframe Structures Assembled Using Single-Stranded DNA Tiles.
    Matthies M; Agarwal NP; Poppleton E; Joshi FM; Šulc P; Schmidt TL
    ACS Nano; 2019 Feb; 13(2):1839-1848. PubMed ID: 30624898
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy.
    Shi X; Lu W; Wang Z; Pan L; Cui G; Xu J; LaBean TH
    Nanotechnology; 2014 Feb; 25(7):075602. PubMed ID: 24451169
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preparation of DNA nanostructures with repetitive binding motifs by rolling circle amplification.
    Reiss E; Hölzel R; Bier FF
    Methods Mol Biol; 2011; 749():151-68. PubMed ID: 21674371
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single-stranded templates as railroad tracks for hierarchical assembly of DNA origami.
    Rahbani JF; Hsu JCC; Chidchob P; Sleiman HF
    Nanoscale; 2018 Aug; 10(29):13994-13999. PubMed ID: 29995052
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Directing self-assembly of DNA nanotubes using programmable seeds.
    Mohammed AM; Schulman R
    Nano Lett; 2013 Sep; 13(9):4006-13. PubMed ID: 23919535
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Self-assembled arrays of peptide nanotubes by vapour deposition.
    Adler-Abramovich L; Aronov D; Beker P; Yevnin M; Stempler S; Buzhansky L; Rosenman G; Gazit E
    Nat Nanotechnol; 2009 Dec; 4(12):849-54. PubMed ID: 19893524
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic self-assembly of DNA minor groove-binding ligand DB921 into nanotubes triggered by an alkali halide.
    Mizuta R; Devos JM; Webster J; Ling WL; Narayanan T; Round A; Munnur D; Mossou E; Farahat AA; Boykin DW; Wilson WD; Neidle S; Schweins R; Rannou P; Haertlein M; Forsyth VT; Mitchell EP
    Nanoscale; 2018 Mar; 10(12):5550-5558. PubMed ID: 29517086
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrogen-bonded nanotubes as a model for DNA transcription.
    Sajfert V; Dajić R; Tosić B
    J Nanosci Nanotechnol; 2004 Sep; 4(7):886-90. PubMed ID: 15570977
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates.
    Maune HT; Han SP; Barish RD; Bockrath M; Goddard WA; Rothemund PW; Winfree E
    Nat Nanotechnol; 2010 Jan; 5(1):61-6. PubMed ID: 19898497
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineering Synthetic Myosin Filaments Using DNA Nanotubes.
    Sommese RF; Sivaramakrishnan S
    Methods Mol Biol; 2018; 1805():93-101. PubMed ID: 29971714
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Autonomous dynamic control of DNA nanostructure self-assembly.
    Green LN; Subramanian HKK; Mardanlou V; Kim J; Hariadi RF; Franco E
    Nat Chem; 2019 Jun; 11(6):510-520. PubMed ID: 31011170
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enzyme-Driven Assembly and Disassembly of Hybrid DNA-RNA Nanotubes.
    Agarwal S; Franco E
    J Am Chem Soc; 2019 May; 141(19):7831-7841. PubMed ID: 31042366
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DNA Nanostructures that Self-Heal in Serum.
    Li Y; Schulman R
    Nano Lett; 2019 Jun; 19(6):3751-3760. PubMed ID: 31140279
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Constructing Large 2D Lattices Out of DNA-Tiles.
    Parikka JM; Sokołowska K; Markešević N; Toppari JJ
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33801952
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Small circular DNA molecules act as rigid motifs to build DNA nanotubes.
    Zheng H; Xiao M; Yan Q; Ma Y; Xiao SJ
    J Am Chem Soc; 2014 Jul; 136(29):10194-7. PubMed ID: 25000226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.