These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2208640)

  • 21. An anterograde tracer study of the developing corticospinal tract in the rat: three components.
    Joosten EA; Gribnau AA; Dederen PJ
    Brain Res; 1987 Nov; 433(1):121-30. PubMed ID: 3676848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of corticospinal tract fibers and their plasticity I: quantitative analysis of the developing corticospinal tract in mice.
    Uematsu J; Ono K; Yamano T; Shimada M
    Brain Dev; 1996; 18(1):29-34. PubMed ID: 8907339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Channeling of developing rat corticospinal tract axons by myelin-associated neurite growth inhibitors.
    Schwab ME; Schnell L
    J Neurosci; 1991 Mar; 11(3):709-21. PubMed ID: 1705967
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Collagen implants and cortico-spinal axonal growth after mid-thoracic spinal cord lesion in the adult rat.
    Joosten EA; Bär PR; Gispen WH
    J Neurosci Res; 1995 Jul; 41(4):481-90. PubMed ID: 7473879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Outgrowth of the pyramidal tract in the rat cervical spinal cord: growth cone ultrastructure and guidance.
    Gorgels TG
    J Comp Neurol; 1991 Apr; 306(1):95-116. PubMed ID: 2040732
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Postnatal growth of corticospinal axons in the spinal cord of developing mice.
    Gianino S; Stein SA; Li H; Lu X; Biesiada E; Ulas J; Xu XM
    Brain Res Dev Brain Res; 1999 Feb; 112(2):189-204. PubMed ID: 9878731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Postnatal Development of the Corticospinal Tract in the Reeler Mouse.
    Namikawa T; Kikkawa S; Inokuchi G; Terashima T
    Kobe J Med Sci; 2015 Dec; 61(3):E71-81. PubMed ID: 27323786
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Axon ramification following unilateral cortical ablation in neonatal rats.
    Ono K; Watanabe Y; Ishizuka C; Uematsu J; Aisaka A; Yamano T; Shimada M
    Brain Dev; 1994; 16(3):264-6. PubMed ID: 7943618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Astrocytes and guidance of outgrowing corticospinal tract axons in the rat. An immunocytochemical study using anti-vimentin and anti-glial fibrillary acidic protein.
    Joosten EA; Gribnau AA
    Neuroscience; 1989; 31(2):439-52. PubMed ID: 2797445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spinal cord transection in adult rats: effects of local infusion of nerve growth factor on the corticospinal tract axons.
    Fernandez E; Pallini R; Lauretti L; Mercanti D; Serra A; Calissano P
    Neurosurgery; 1993 Nov; 33(5):889-93. PubMed ID: 7505409
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of the pyramidal tract in the hamster. I. A light microscopic study.
    Reh T; Kalil K
    J Comp Neurol; 1981 Jul; 200(1):55-67. PubMed ID: 7251945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth of ascending spinal axons in CNS scar tissue.
    Frisén J; Fried K; Sjögren AM; Risling M
    Int J Dev Neurosci; 1993 Aug; 11(4):461-75. PubMed ID: 7694445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.
    Zareen N; Shinozaki M; Ryan D; Alexander H; Amer A; Truong DQ; Khadka N; Sarkar A; Naeem S; Bikson M; Martin JH
    Exp Neurol; 2017 Nov; 297():179-189. PubMed ID: 28803750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ascending tract neurons survive spinal cord transection in the neonatal rat.
    Bryz-Gornia WF; Stelzner DJ
    Exp Neurol; 1986 Jul; 93(1):195-210. PubMed ID: 3732459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perinodal astrocytic processes at nodes of Ranvier in developing normal and glial cell deficient rat spinal cord.
    Sims TJ; Waxman SG; Black JA; Gilmore SA
    Brain Res; 1985 Jul; 337(2):321-31. PubMed ID: 4027576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Implantation of cultured sensory neurons and Schwann cells into lesioned neonatal rat spinal cord. II. Implant characteristics and examination of corticospinal tract growth.
    Kuhlengel KR; Bunge MB; Bunge RP; Burton H
    J Comp Neurol; 1990 Mar; 293(1):74-91. PubMed ID: 1690226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of IN-1 antibody and acidic FGF-fibrin glue on the response of injured corticospinal tract axons to human Schwann cell grafts.
    Guest JD; Hesse D; Schnell L; Schwab ME; Bunge MB; Bunge RP
    J Neurosci Res; 1997 Dec; 50(5):888-905. PubMed ID: 9418975
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth of corticospinal axons on prosthetic substrates introduced into the spinal cord of neonatal rats.
    Schreyer DJ; Jones EG
    Brain Res; 1987 Oct; 432(2):291-9. PubMed ID: 3676843
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extension and regeneration of corticospinal axons after early spinal injury and the maintenance of corticospinal topography.
    Bates CA; Stelzner DJ
    Exp Neurol; 1993 Sep; 123(1):106-17. PubMed ID: 8405271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Origin and distribution of phrenic primary afferent nerve fibers in the spinal cord of the adult rat.
    Goshgarian HG; Roubal PJ
    Exp Neurol; 1986 Jun; 92(3):624-38. PubMed ID: 3709737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.