BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 2208641)

  • 1. Effects of early postnatal receptor damage on development of gustatory recipient zones within the nucleus of the solitary tract.
    Lasiter PS; Kachele DL
    Brain Res Dev Brain Res; 1990 Aug; 55(1):57-71. PubMed ID: 2208641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of early postnatal receptor damage on dendritic development in gustatory recipient zones of the rostral nucleus of the solitary tract.
    Lasiter PS
    Brain Res Dev Brain Res; 1991 Aug; 61(2):197-206. PubMed ID: 1721561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postnatal development of gustatory recipient zones within the nucleus of the solitary tract.
    Lasiter PS
    Brain Res Bull; 1992 May; 28(5):667-77. PubMed ID: 1617454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Murine strain differences in taste responsivity and organization of the rostral nucleus of the solitary tract.
    Kachele DL; Lasiter PS
    Brain Res Bull; 1990 Feb; 24(2):239-47. PubMed ID: 2322858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated NADH-dehydrogenase activity characterizes the rostral gustatory zone of the solitary nucleus in rat.
    Lasiter PS; Kachele DL
    Brain Res Bull; 1989 Apr; 22(4):777-81. PubMed ID: 2736404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial rearing alters development of the nucleus of the solitary tract.
    Lasiter PS; Diaz J
    Brain Res Bull; 1992; 29(3-4):407-10. PubMed ID: 1393613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in geniculate ganglion proteins following fungiform receptor damage.
    Lasiter PS; Bulcourf BB
    Brain Res Dev Brain Res; 1995 Nov; 89(2):289-306. PubMed ID: 8612332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postnatal development of the rostral solitary nucleus in rat: dendritic morphology and mitochondrial enzyme activity.
    Lasiter PS; Wong DM; Kachele DL
    Brain Res Bull; 1989 Feb; 22(2):313-21. PubMed ID: 2468401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convergence in mammalian nucleus of solitary tract during development and functional differentiation of salt taste circuits.
    Vogt MB; Mistretta CM
    J Neurosci; 1990 Sep; 10(9):3148-57. PubMed ID: 2398375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Taste-responsive neurons in the nucleus of the solitary tract receive gustatory information from both sides of the tongue in the hamster.
    Li CS; Mao L; Cho YK
    Am J Physiol Regul Integr Comp Physiol; 2008 Feb; 294(2):R372-81. PubMed ID: 18077506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental sodium restriction and gustatory afferent terminal field organization in the parabrachial nucleus.
    Walker BR; Hill DL
    Physiol Behav; 1998 May; 64(2):173-8. PubMed ID: 9662082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organization of GABA and GABA-transaminase containing neurons in the gustatory zone of the nucleus of the solitary tract.
    Lasiter PS; Kachele DL
    Brain Res Bull; 1988 Oct; 21(4):623-36. PubMed ID: 3208150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gustatory projections from the nucleus of the solitary tract to the parabrachial nuclei in the hamster.
    Cho YK; Li CS; Smith DV
    Chem Senses; 2002 Jan; 27(1):81-90. PubMed ID: 11751472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anatomy of the gustatory system in the hamster: central projections of the chorda tympani and the lingual nerve.
    Whitehead MC; Frank ME
    J Comp Neurol; 1983 Nov; 220(4):378-95. PubMed ID: 6643734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convergence of lingual and palatal gustatory neural activity in the nucleus of the solitary tract.
    Travers SP; Pfaffmann C; Norgren R
    Brain Res; 1986 Feb; 365(2):305-20. PubMed ID: 3947995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamate receptor antagonists block gustatory afferent input to the nucleus of the solitary tract.
    Li CS; Smith DV
    J Neurophysiol; 1997 Mar; 77(3):1514-25. PubMed ID: 9084616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo recordings from rat geniculate ganglia: taste response properties of individual greater superficial petrosal and chorda tympani neurones.
    Sollars SI; Hill DL
    J Physiol; 2005 May; 564(Pt 3):877-93. PubMed ID: 15746166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization of the nucleus of the solitary tract in the hamster: acetylcholinesterase, NADH dehydrogenase, and cytochrome oxidase histochemistry.
    Barry MA; Halsell CB; Whitehead MC
    Microsc Res Tech; 1993 Oct; 26(3):231-44. PubMed ID: 8241561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gustatory terminal field organization and developmental plasticity in the nucleus of the solitary tract revealed through triple-fluorescence labeling.
    May OL; Hill DL
    J Comp Neurol; 2006 Aug; 497(4):658-69. PubMed ID: 16739199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dietary sodium chloride deprivation throughout development selectively influences the terminal field organization of gustatory afferent fibers projecting to the rat nucleus of the solitary tract.
    King CT; Hill DL
    J Comp Neurol; 1991 Jan; 303(1):159-69. PubMed ID: 2005238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.