BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 22086909)

  • 1. DNA replication occurs in all lamina positive micronuclei, but never in lamina negative micronuclei.
    Okamoto A; Utani K; Shimizu N
    Mutagenesis; 2012 May; 27(3):323-7. PubMed ID: 22086909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micronuclei bearing acentric extrachromosomal chromatin are transcriptionally competent and may perturb the cancer cell phenotype.
    Utani K; Kawamoto JK; Shimizu N
    Mol Cancer Res; 2007 Jul; 5(7):695-704. PubMed ID: 17606478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of micronuclei during interphase by coupling between cytoplasmic membrane blebbing and nuclear budding.
    Utani K; Okamoto A; Shimizu N
    PLoS One; 2011; 6(11):e27233. PubMed ID: 22073297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of the p34(cdc2) target site on goldfish germinal vesicle lamin B3 before oocyte maturation.
    Yamaguchi A; Katsu Y; Matsuyama M; Yoshikuni M; Nagahama Y
    Eur J Cell Biol; 2006 Jun; 85(6):501-17. PubMed ID: 16600424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Resolution of spatial constraints during replication of peripheral chromatin].
    Zhironkina OA; Kurchashova SY; Bratseva AL; Cherepanynets VD; Strelkova OS; Belmont AS; Kireev II
    Tsitologiia; 2014; 56(12):899-906. PubMed ID: 25929131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nuclear lamina and its proposed roles in tumorigenesis: projection on the hematologic malignancies and future targeted therapy.
    Prokocimer M; Margalit A; Gruenbaum Y
    J Struct Biol; 2006 Aug; 155(2):351-60. PubMed ID: 16697219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filaments made from A- and B-type lamins differ in structure and organization.
    Goldberg MW; Huttenlauch I; Hutchison CJ; Stick R
    J Cell Sci; 2008 Jan; 121(Pt 2):215-25. PubMed ID: 18187453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigations of the pathway of incorporation and function of lamin A in the nuclear lamina.
    Dyer JA; Lane BE; Hutchison CJ
    Microsc Res Tech; 1999 Apr; 45(1):1-12. PubMed ID: 10206150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of lamin B1 for the maintenance of nuclear structure and function.
    Camps J; Erdos MR; Ried T
    Nucleus; 2015; 6(1):8-14. PubMed ID: 25602590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic activities in micronuclei: is the DNA entrapped in micronuclei lost for the cell?
    Terradas M; Martín M; Tusell L; Genescà A
    Mutat Res; 2010; 705(1):60-7. PubMed ID: 20307686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induced detachment of acentric chromatin from mitotic chromosomes leads to their cytoplasmic localization at G(1) and the micronucleation by lamin reorganization at S phase.
    Tanaka T; Shimizu N
    J Cell Sci; 2000 Feb; 113 ( Pt 4)():697-707. PubMed ID: 10652262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MacroH2A1 associates with nuclear lamina and maintains chromatin architecture in mouse liver cells.
    Fu Y; Lv P; Yan G; Fan H; Cheng L; Zhang F; Dang Y; Wu H; Wen B
    Sci Rep; 2015 Nov; 5():17186. PubMed ID: 26603343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replication timing of amplified genetic regions relates to intranuclear localization but not to genetic activity or G/R band.
    Shimizu N; Ochi T; Itonaga K
    Exp Cell Res; 2001 Aug; 268(2):201-10. PubMed ID: 11478846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Both lamin A and lamin C mutations cause lamina instability as well as loss of internal nuclear lamin organization.
    Broers JL; Kuijpers HJ; Ostlund C; Worman HJ; Endert J; Ramaekers FC
    Exp Cell Res; 2005 Apr; 304(2):582-92. PubMed ID: 15748902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential expression of nuclear lamin, the major component of nuclear lamina, during neurogenesis in two germinal regions of adult rat brain.
    Takamori Y; Tamura Y; Kataoka Y; Cui Y; Seo S; Kanazawa T; Kurokawa K; Yamada H
    Eur J Neurosci; 2007 Mar; 25(6):1653-62. PubMed ID: 17432957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of nuclear lamina growth in interphase.
    Zhironkina OA; Kurchashova SY; Pozharskaia VA; Cherepanynets VD; Strelkova OS; Hozak P; Kireev II
    Histochem Cell Biol; 2016 Apr; 145(4):419-32. PubMed ID: 26883443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C.
    Ivorra C; Kubicek M; González JM; Sanz-González SM; Alvarez-Barrientos A; O'Connor JE; Burke B; Andrés V
    Genes Dev; 2006 Feb; 20(3):307-20. PubMed ID: 16452503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting nuclear duality of ciliates to analyse topological requirements for DNA replication and transcription.
    Postberg J; Alexandrova O; Cremer T; Lipps HJ
    J Cell Sci; 2005 Sep; 118(Pt 17):3973-83. PubMed ID: 16129882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The truncated prelamin A in Hutchinson-Gilford progeria syndrome alters segregation of A-type and B-type lamin homopolymers.
    Delbarre E; Tramier M; Coppey-Moisan M; Gaillard C; Courvalin JC; Buendia B
    Hum Mol Genet; 2006 Apr; 15(7):1113-22. PubMed ID: 16481358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DelK32-lamin A/C has abnormal location and induces incomplete tissue maturation and severe metabolic defects leading to premature death.
    Bertrand AT; Renou L; Papadopoulos A; Beuvin M; Lacène E; Massart C; Ottolenghi C; Decostre V; Maron S; Schlossarek S; Cattin ME; Carrier L; Malissen M; Arimura T; Bonne G
    Hum Mol Genet; 2012 Mar; 21(5):1037-48. PubMed ID: 22090424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.