These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 22087266)

  • 1. Characterization of visual percepts evoked by noninvasive stimulation of the human posterior parietal cortex.
    Fried PJ; Elkin-Frankston S; Rushmore RJ; Hilgetag CC; Valero-Cabre A
    PLoS One; 2011; 6(11):e27204. PubMed ID: 22087266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex.
    Samaha J; Gosseries O; Postle BR
    J Neurosci; 2017 Mar; 37(11):2824-2833. PubMed ID: 28179556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interhemispheric transfer of phosphenes generated by occipital versus parietal transcranial magnetic stimulation.
    Marzi CA; Mancini F; Savazzi S
    Exp Brain Res; 2009 Jan; 192(3):431-41. PubMed ID: 18663438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Waves of awareness for occipital and parietal phosphenes perception.
    Bagattini C; Mazzi C; Savazzi S
    Neuropsychologia; 2015 Apr; 70():114-25. PubMed ID: 25698639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can IPS reach visual awareness without V1? Evidence from TMS in healthy subjects and hemianopic patients.
    Mazzi C; Mancini F; Savazzi S
    Neuropsychologia; 2014 Nov; 64():134-44. PubMed ID: 25258247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The perceptual and functional consequences of parietal top-down modulation on the visual cortex.
    Silvanto J; Muggleton N; Lavie N; Walsh V
    Cereb Cortex; 2009 Feb; 19(2):327-30. PubMed ID: 18515296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinal and visual cortex distance from transcranial magnetic stimulation of the vertex affects phosphene perception.
    Webster K; Ro T
    Exp Brain Res; 2017 Sep; 235(9):2857-2866. PubMed ID: 28676920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subjective characteristics of TMS-induced phosphenes originating in human V1 and V2.
    Salminen-Vaparanta N; Vanni S; Noreika V; Valiulis V; Móró L; Revonsuo A
    Cereb Cortex; 2014 Oct; 24(10):2751-60. PubMed ID: 23696280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bypassing input to V1 in visual awareness: A TMS-EROS investigation.
    Knight RS; Chen T; Center EG; Gratton G; Fabiani M; Savazzi S; Mazzi C; Beck DM
    Neuropsychologia; 2024 Jun; 198():108864. PubMed ID: 38521150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcranial magnetic stimulation in the visual system. II. Characterization of induced phosphenes and scotomas.
    Kammer T; Puls K; Erb M; Grodd W
    Exp Brain Res; 2005 Jan; 160(1):129-40. PubMed ID: 15368087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State-dependency effects on TMS: a look at motive phosphene behavior.
    Najib U; Horvath JC; Silvanto J; Pascual-Leone A
    J Vis Exp; 2010 Dec; (46):. PubMed ID: 21248686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neural signature of phosphene perception.
    Taylor PC; Walsh V; Eimer M
    Hum Brain Mapp; 2010 Sep; 31(9):1408-17. PubMed ID: 20091790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From qualia to quantia: a system to document and quantify phosphene percepts elicited by non-invasive neurostimulation of the human occipital cortex.
    Elkin-Frankston S; Fried P; Rushmore RJ; Valero-Cabré A
    J Neurosci Methods; 2011 Jun; 198(2):149-57. PubMed ID: 21419796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemispheric differences in frontal and parietal influences on human occipital cortex: direct confirmation with concurrent TMS-fMRI.
    Ruff CC; Blankenburg F; Bjoertomt O; Bestmann S; Weiskopf N; Driver J
    J Cogn Neurosci; 2009 Jun; 21(6):1146-61. PubMed ID: 18752395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation.
    Kammer T; Beck S; Erb M; Grodd W
    Clin Neurophysiol; 2001 Nov; 112(11):2015-21. PubMed ID: 11682339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping the visual brain areas susceptible to phosphene induction through brain stimulation.
    Schaeffner LF; Welchman AE
    Exp Brain Res; 2017 Jan; 235(1):205-217. PubMed ID: 27683006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of phosphene perception during saccadic eye movements: a transcranial magnetic stimulation study of the human visual cortex.
    Boulay C; Paus T
    Exp Brain Res; 2005 Nov; 167(2):297-300. PubMed ID: 16175365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphene-guided transcranial magnetic stimulation of occipital but not parietal cortex suppresses stimulus visibility.
    Tapia E; Mazzi C; Savazzi S; Beck DM
    Exp Brain Res; 2014 Jun; 232(6):1989-97. PubMed ID: 24584900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the routes of perception: Hemispheric asymmetries in signal propagation dynamics.
    Bonfanti D; Mazzi C; Savazzi S
    Psychophysiology; 2024 Jun; 61(6):e14529. PubMed ID: 38279560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spreading photoparoxysmal EEG response is associated with an abnormal cortical excitability pattern.
    Siniatchkin M; Groppa S; Jerosch B; Muhle H; Kurth C; Shepherd AJ; Siebner H; Stephani U
    Brain; 2007 Jan; 130(Pt 1):78-87. PubMed ID: 17121743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.