BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 22087331)

  • 1. Prediction of transposable element derived enhancers using chromatin modification profiles.
    Huda A; Tyagi E; Mariño-Ramírez L; Bowen NJ; Jjingo D; Jordan IK
    PLoS One; 2011; 6(11):e27513. PubMed ID: 22087331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic regulation of transposable element derived human gene promoters.
    Huda A; Bowen NJ; Conley AB; Jordan IK
    Gene; 2011 Apr; 475(1):39-48. PubMed ID: 21215797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific subfamilies of transposable elements contribute to different domains of T lymphocyte enhancers.
    Ye M; Goudot C; Hoyler T; Lemoine B; Amigorena S; Zueva E
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7905-7916. PubMed ID: 32193341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transposable Element Exaptation into Regulatory Regions Is Rare, Influenced by Evolutionary Age, and Subject to Pleiotropic Constraints.
    Simonti CN; Pavlicev M; Capra JA
    Mol Biol Evol; 2017 Nov; 34(11):2856-2869. PubMed ID: 28961735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells.
    Glinsky GV
    Chromosome Res; 2018 Mar; 26(1-2):61-84. PubMed ID: 29335803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of functional transposable element enhancers in acute myeloid leukemia.
    Zeng Y; Cao Y; Halevy RS; Nguyen P; Liu D; Zhang X; Ahituv N; Han JJ
    Sci China Life Sci; 2020 May; 63(5):675-687. PubMed ID: 32170627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin interaction networks revealed unique connectivity patterns of broad H3K4me3 domains and super enhancers in 3D chromatin.
    Thibodeau A; Márquez EJ; Shin DG; Vera-Licona P; Ucar D
    Sci Rep; 2017 Oct; 7(1):14466. PubMed ID: 29089515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancer prediction in the human genome by probabilistic modelling of the chromatin feature patterns.
    Osmala M; Lähdesmäki H
    BMC Bioinformatics; 2020 Jul; 21(1):317. PubMed ID: 32689977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The transposable element environment of human genes is associated with histone and expression changes in cancer.
    Grégoire L; Haudry A; Lerat E
    BMC Genomics; 2016 Aug; 17():588. PubMed ID: 27506777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone modifications at human enhancers reflect global cell-type-specific gene expression.
    Heintzman ND; Hon GC; Hawkins RD; Kheradpour P; Stark A; Harp LF; Ye Z; Lee LK; Stuart RK; Ching CW; Ching KA; Antosiewicz-Bourget JE; Liu H; Zhang X; Green RD; Lobanenkov VV; Stewart R; Thomson JA; Crawford GE; Kellis M; Ren B
    Nature; 2009 May; 459(7243):108-12. PubMed ID: 19295514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unique chromatin signature uncovers early developmental enhancers in humans.
    Rada-Iglesias A; Bajpai R; Swigut T; Brugmann SA; Flynn RA; Wysocka J
    Nature; 2011 Feb; 470(7333):279-83. PubMed ID: 21160473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape.
    Xie M; Hong C; Zhang B; Lowdon RF; Xing X; Li D; Zhou X; Lee HJ; Maire CL; Ligon KL; Gascard P; Sigaroudinia M; Tlsty TD; Kadlecek T; Weiss A; O'Geen H; Farnham PJ; Madden PA; Mungall AJ; Tam A; Kamoh B; Cho S; Moore R; Hirst M; Marra MA; Costello JF; Wang T
    Nat Genet; 2013 Jul; 45(7):836-41. PubMed ID: 23708189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide enhancer prediction from epigenetic signatures using genetic algorithm-optimized support vector machines.
    Fernández M; Miranda-Saavedra D
    Nucleic Acids Res; 2012 May; 40(10):e77. PubMed ID: 22328731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic regulation of Mammalian genomes by transposable elements.
    Huda A; Jordan IK
    Ann N Y Acad Sci; 2009 Oct; 1178():276-84. PubMed ID: 19845643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput functional testing of ENCODE segmentation predictions.
    Kwasnieski JC; Fiore C; Chaudhari HG; Cohen BA
    Genome Res; 2014 Oct; 24(10):1595-602. PubMed ID: 25035418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A semi-supervised approach uncovers thousands of intragenic enhancers differentially activated in human cells.
    González-Vallinas J; Pagès A; Singh B; Eyras E
    BMC Genomics; 2015 Jul; 16(1):523. PubMed ID: 26169177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of unfixed transposable element insertions to human regulatory variation.
    Goubert C; Zevallos NA; Feschotte C
    Philos Trans R Soc Lond B Biol Sci; 2020 Mar; 375(1795):20190331. PubMed ID: 32075552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome.
    Gu Z; Jin K; Crabbe MJC; Zhang Y; Liu X; Huang Y; Hua M; Nan P; Zhang Z; Zhong Y
    Protein Cell; 2016 Apr; 7(4):250-266. PubMed ID: 26861146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RFECS: a random-forest based algorithm for enhancer identification from chromatin state.
    Rajagopal N; Xie W; Li Y; Wagner U; Wang W; Stamatoyannopoulos J; Ernst J; Kellis M; Ren B
    PLoS Comput Biol; 2013; 9(3):e1002968. PubMed ID: 23526891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transposable elements are regulated by context-specific patterns of chromatin marks in mouse embryonic stem cells.
    He J; Fu X; Zhang M; He F; Li W; Abdul MM; Zhou J; Sun L; Chang C; Li Y; Liu H; Wu K; Babarinde IA; Zhuang Q; Loh YH; Chen J; Esteban MA; Hutchins AP
    Nat Commun; 2019 Jan; 10(1):34. PubMed ID: 30604769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.