These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 22087469)
1. Porphyrin based porous organic polymers: novel synthetic strategy and exceptionally high CO2 adsorption capacity. Modak A; Nandi M; Mondal J; Bhaumik A Chem Commun (Camb); 2012 Jan; 48(2):248-50. PubMed ID: 22087469 [TBL] [Abstract][Full Text] [Related]
2. Facile one-pot synthesis of porphyrin based porous polymer networks (PPNs) as biomimetic catalysts. Zou L; Feng D; Liu TF; Chen YP; Fordham S; Yuan S; Tian J; Zhou HC Chem Commun (Camb); 2015 Mar; 51(19):4005-8. PubMed ID: 25658714 [TBL] [Abstract][Full Text] [Related]
3. Highly CO2-selective organic molecular cages: what determines the CO2 selectivity. Jin Y; Voss BA; Jin A; Long H; Noble RD; Zhang W J Am Chem Soc; 2011 May; 133(17):6650-8. PubMed ID: 21473590 [TBL] [Abstract][Full Text] [Related]
4. Metal Microporous Aromatic Polymers with Improved Performance for Small Gas Storage. Fu X; Zhang Y; Gu S; Zhu Y; Yu G; Pan C; Wang Z; Hu Y Chemistry; 2015 Sep; 21(38):13357-63. PubMed ID: 26213114 [TBL] [Abstract][Full Text] [Related]
5. Microporous poly(Schiff base) constructed from tetraphenyladamantane units for adsorption of gases and organic vapors. Li G; Zhang B; Wang Z Macromol Rapid Commun; 2014 May; 35(10):971-5. PubMed ID: 24596274 [TBL] [Abstract][Full Text] [Related]
6. Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. Lu W; Yuan D; Sculley J; Zhao D; Krishna R; Zhou HC J Am Chem Soc; 2011 Nov; 133(45):18126-9. PubMed ID: 22007926 [TBL] [Abstract][Full Text] [Related]
7. In Situ Doping Strategy for the Preparation of Conjugated Triazine Frameworks Displaying Efficient CO2 Capture Performance. Zhu X; Tian C; Veith GM; Abney CW; Dehaudt J; Dai S J Am Chem Soc; 2016 Sep; 138(36):11497-500. PubMed ID: 27584153 [TBL] [Abstract][Full Text] [Related]
8. Postfunctionalization of Porous Organic Polymers Based on Friedel-Crafts Acylation for CO Wang L; Xiao Q; Zhang D; Kuang W; Huang J; Liu YN ACS Appl Mater Interfaces; 2020 Aug; 12(32):36652-36659. PubMed ID: 32692144 [TBL] [Abstract][Full Text] [Related]
9. Multifunctional Porous Organic Polymers: Tuning of Porosity, CO Bandyopadhyay S; Anil AG; James A; Patra A ACS Appl Mater Interfaces; 2016 Oct; 8(41):27669-27678. PubMed ID: 27696852 [TBL] [Abstract][Full Text] [Related]
10. Template-free synthesis of porous carbon from triazine based polymers and their use in iodine adsorption and CO Yao C; Li G; Wang J; Xu Y; Chang L Sci Rep; 2018 Jan; 8(1):1867. PubMed ID: 29382875 [TBL] [Abstract][Full Text] [Related]
11. Functionalizing porous aromatic frameworks with polar organic groups for high-capacity and selective CO2 separation: a molecular simulation study. Babarao R; Dai S; Jiang DE Langmuir; 2011 Apr; 27(7):3451-60. PubMed ID: 21351767 [TBL] [Abstract][Full Text] [Related]
12. Knitting polycyclic aromatic hydrocarbon-based microporous organic polymers for efficient CO Hou S; Wang S; Long X; Tan B RSC Adv; 2018 Mar; 8(19):10347-10354. PubMed ID: 35540478 [TBL] [Abstract][Full Text] [Related]
13. Hybrid porous materials with high surface area derived from bromophenylethenyl-functionalized cubic siloxane-based building units. Chaikittisilp W; Sugawara A; Shimojima A; Okubo T Chemistry; 2010 May; 16(20):6006-14. PubMed ID: 20391584 [TBL] [Abstract][Full Text] [Related]
14. A triazine-based covalent organic polymer for efficient CO2 adsorption. Gomes R; Bhanja P; Bhaumik A Chem Commun (Camb); 2015 Jun; 51(49):10050-3. PubMed ID: 26009208 [TBL] [Abstract][Full Text] [Related]
15. Porphyrin-based porous organic polymers synthesized using the Alder-Longo method: the most traditional synthetic strategy with exceptional capacity. Liu Q; Pan W; Zhang J; Yang M; Chen Q; Liu F; Li J; Wei S; Zhu G RSC Adv; 2024 Jun; 14(29):20837-20855. PubMed ID: 38952933 [TBL] [Abstract][Full Text] [Related]
16. Direct triblock-copolymer-templating synthesis of ordered nitrogen-containing mesoporous polymers. Yang J; Zhai Y; Deng Y; Gu D; Li Q; Wu Q; Huang Y; Tu B; Zhao D J Colloid Interface Sci; 2010 Feb; 342(2):579-85. PubMed ID: 19926096 [TBL] [Abstract][Full Text] [Related]
17. Molecular Expansion for Constructing Porous Organic Polymers with High Surface Areas and Well-Defined Nanopores. Liu Y; Wang S; Meng X; Ye Y; Song X; Liang Z; Zhao Y Angew Chem Int Ed Engl; 2020 Oct; 59(44):19487-19493. PubMed ID: 32347598 [TBL] [Abstract][Full Text] [Related]
18. Kubas-type hydrogen storage in V(III) polymers using tri- and tetradentate bridging ligands. Hoang TK; Hamaed A; Moula G; Aroca R; Trudeau M; Antonelli DM J Am Chem Soc; 2011 Apr; 133(13):4955-64. PubMed ID: 21391675 [TBL] [Abstract][Full Text] [Related]
19. Facile approach to preparing microporous organic polymers through benzoin condensation. Zhao YC; Wang T; Zhang LM; Cui Y; Han BH ACS Appl Mater Interfaces; 2012 Dec; 4(12):6975-81. PubMed ID: 23194067 [TBL] [Abstract][Full Text] [Related]
20. Magnetic and high rate adsorption properties of porous Mn(1-x)Zn(x)Fe2O4 (0 ≤ x ≤ 0.8) adsorbents. Hou X; Feng J; Liu X; Ren Y; Fan Z; Zhang M J Colloid Interface Sci; 2011 Jan; 353(2):524-9. PubMed ID: 20974474 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]