These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 22087708)

  • 41. Tuning the surface-enhanced Raman scattering effect to different molecular groups by switching the silver colloid solution pH.
    Kazanci M; Schulte JP; Douglas C; Fratzl P; Pink D; Smith-Palmer T
    Appl Spectrosc; 2009 Feb; 63(2):214-23. PubMed ID: 19215652
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Site-selective localization of analytes on gold nanorod surface for investigating field enhancement distribution in surface-enhanced Raman scattering.
    Chen T; Du C; Tan LH; Shen Z; Chen H
    Nanoscale; 2011 Apr; 3(4):1575-81. PubMed ID: 21286607
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates.
    Itoh T; Yoshikawa H; Yoshida K; Biju V; Ishikawa M
    J Chem Phys; 2009 Jun; 130(21):214706. PubMed ID: 19508086
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantifying the enhancement mechanisms of surface-enhanced Raman scattering using a Raman bond model.
    Chen R; Jensen L
    J Chem Phys; 2020 Dec; 153(22):224704. PubMed ID: 33317299
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vibrational characterization of L-leucine phosphonate analogues: FT-IR, FT-Raman, and SERS spectroscopy studies and DFT calculations.
    Podstawka-Proniewicz E; Piergies N; Skołuba D; Kafarski P; Kim Y; Proniewicz LM
    J Phys Chem A; 2011 Oct; 115(40):11067-78. PubMed ID: 21888349
    [TBL] [Abstract][Full Text] [Related]  

  • 46. DFT study of chemical mechanism of pre-SERS spectra in Pyrazine-metal complex and metal-Pyrazine-metal junction.
    Zhao X; Liu S; Li Y; Chen M
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Feb; 75(2):794-8. PubMed ID: 20034844
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanogap structures: combining enhanced Raman spectroscopy and electronic transport.
    Natelson D; Li Y; Herzog JB
    Phys Chem Chem Phys; 2013 Apr; 15(15):5262-75. PubMed ID: 23385304
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints.
    Chen T; Wang H; Chen G; Wang Y; Feng Y; Teo WS; Wu T; Chen H
    ACS Nano; 2010 Jun; 4(6):3087-94. PubMed ID: 20509669
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing.
    Camden JP; Dieringer JA; Zhao J; Van Duyne RP
    Acc Chem Res; 2008 Dec; 41(12):1653-61. PubMed ID: 18630932
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of the surface enhanced raman scattering (SERS) of bacteria.
    Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD
    J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Statistical analysis of intensity fluctuations in single molecule SERS spectra.
    Bizzarri AR; Cannistraro S
    Phys Chem Chem Phys; 2007 Oct; 9(39):5315-9. PubMed ID: 17914466
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A unified view of surface-enhanced Raman scattering.
    Lombardi JR; Birke RL
    Acc Chem Res; 2009 Jun; 42(6):734-42. PubMed ID: 19361212
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel method for preparing controllable and stable silver particle films for surface-enhanced Raman scattering spectroscopy.
    Li X; Xu W; Jia H; Wang X; Zhao B; Li B; Ozaki Y
    Appl Spectrosc; 2004 Jan; 58(1):26-32. PubMed ID: 14727717
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing.
    Kostovski G; White DJ; Mitchell A; Austin MW; Stoddart PR
    Biosens Bioelectron; 2009 Jan; 24(5):1531-5. PubMed ID: 19084390
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comparative study of gold nanocubes, octahedra, and rhombic dodecahedra as highly sensitive SERS substrates.
    Wu HL; Tsai HR; Hung YT; Lao KU; Liao CW; Chung PJ; Huang JS; Chen IC; Huang MH
    Inorg Chem; 2011 Sep; 50(17):8106-11. PubMed ID: 21797229
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Surface-enhanced Raman scattering study of riboflavin on borohydride-reduced silver colloids: Dependence of concentration, halide anions and pH values.
    Liu F; Gu H; Lin Y; Qi Y; Dong X; Gao J; Cai T
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jan; 85(1):111-9. PubMed ID: 22001006
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The investigation of a series of n-hydroxybenzoic acids (n=p, m, o) on a new surface enhanced Raman scattering active substrate.
    Wang LR; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Dec; 62(4-5):958-63. PubMed ID: 16303634
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single-molecule vibrational pumping in SERS.
    Galloway CM; Le Ru EC; Etchegoin PG
    Phys Chem Chem Phys; 2009 Sep; 11(34):7372-80. PubMed ID: 19690708
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electromagnetic model and calculations of the surface-enhanced Raman-shifted emission from Langmuir-Blodgett films on metal nanostructures.
    Giannini V; Sánchez-Gil JA; García-Ramos JV; Méndez ER
    J Chem Phys; 2007 Jul; 127(4):044702. PubMed ID: 17672712
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Raman enhancement factor of a single tunable nanoplasmonic resonator.
    Su KH; Durant S; Steele JM; Xiong Y; Sun C; Zhang X
    J Phys Chem B; 2006 Mar; 110(9):3964-8. PubMed ID: 16509683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.