These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 22087849)

  • 1. Integrated microdevice for long-term automated perfusion culture without shear stress and real-time electrochemical monitoring of cells.
    Li LM; Wang W; Zhang SH; Chen SJ; Guo SS; Français O; Cheng JK; Huang WH
    Anal Chem; 2011 Dec; 83(24):9524-30. PubMed ID: 22087849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array.
    Hung PJ; Lee PJ; Sabounchi P; Aghdam N; Lin R; Lee LP
    Lab Chip; 2005 Jan; 5(1):44-8. PubMed ID: 15616739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays.
    Hung PJ; Lee PJ; Sabounchi P; Lin R; Lee LP
    Biotechnol Bioeng; 2005 Jan; 89(1):1-8. PubMed ID: 15580587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell culture chip using low-shear mass transport.
    Liu K; Pitchimani R; Dang D; Bayer K; Harrington T; Pappas D
    Langmuir; 2008 Jun; 24(11):5955-60. PubMed ID: 18471001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Printed carbon microelectrodes for electrochemical detection of single vesicle release from PC12 cells.
    Yakushenko A; Schnitker J; Wolfrum B
    Anal Chem; 2012 May; 84(10):4613-7. PubMed ID: 22509770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models.
    Kimura H; Yamamoto T; Sakai H; Sakai Y; Fujii T
    Lab Chip; 2008 May; 8(5):741-6. PubMed ID: 18432344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multichannel bipotentiostat integrated with a microfluidic platform for electrochemical real-time monitoring of cell cultures.
    Vergani M; Carminati M; Ferrari G; Landini E; Caviglia C; Heiskanen A; Comminges C; Zór K; Sabourin D; Dufva M; Dimaki M; Raiteri R; Wollenberger U; Emneus J; Sampietro M
    IEEE Trans Biomed Circuits Syst; 2012 Oct; 6(5):498-507. PubMed ID: 23853236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-situ measurement of cellular microenvironments in a microfluidic device.
    Lin Z; Cherng-Wen T; Roy P; Trau D
    Lab Chip; 2009 Jan; 9(2):257-62. PubMed ID: 19107282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations.
    Liu MC; Shih HC; Wu JG; Weng TW; Wu CY; Lu JC; Tung YC
    Lab Chip; 2013 May; 13(9):1743-53. PubMed ID: 23475014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating polyurethane culture substrates into poly(dimethylsiloxane) microdevices.
    Moraes C; Kagoma YK; Beca BM; Tonelli-Zasarsky RL; Sun Y; Simmons CA
    Biomaterials; 2009 Oct; 30(28):5241-50. PubMed ID: 19545891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perfusion culture of mammalian cells in a microfluidic channel with a built-in pillar array.
    Zhang C
    Methods Mol Biol; 2012; 853():83-94. PubMed ID: 22323142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic cell culture platform for real-time cellular imaging.
    Hsieh CC; Huang SB; Wu PC; Shieh DB; Lee GB
    Biomed Microdevices; 2009 Aug; 11(4):903-13. PubMed ID: 19370417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated microfluidic culture device to regulate endothelial cell differentiation from embryonic stem cells.
    Lee JM; Kim JE; Kang E; Lee SH; Chung BG
    Electrophoresis; 2011 Nov; 32(22):3133-7. PubMed ID: 22102496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Periodic "flow-stop" perfusion microchannel bioreactors for mammalian and human embryonic stem cell long-term culture.
    Korin N; Bransky A; Dinnar U; Levenberg S
    Biomed Microdevices; 2009 Feb; 11(1):87-94. PubMed ID: 18802754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An agar gel membrane-PDMS hybrid microfluidic device for long term single cell dynamic study.
    Wong I; Atsumi S; Huang WC; Wu TY; Hanai T; Lam ML; Tang P; Yang J; Liao JC; Ho CM
    Lab Chip; 2010 Oct; 10(20):2710-9. PubMed ID: 20664845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic chip integrated with flexible PDMS-based electrochemical cytosensor for dynamic analysis of drug-induced apoptosis on HeLa cells.
    Cao JT; Zhu YD; Rana RK; Zhu JJ
    Biosens Bioelectron; 2014 Jan; 51():97-102. PubMed ID: 23942358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips.
    Leclerc E; El Kirat K; Griscom L
    Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fast cell loading and high-throughput microfluidic system for long-term cell culture in zero-flow environments.
    Luo C; Zhu X; Yu T; Luo X; Ouyang Q; Ji H; Chen Y
    Biotechnol Bioeng; 2008 Sep; 101(1):190-5. PubMed ID: 18646225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.