These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
436 related articles for article (PubMed ID: 22087867)
1. Application of a systems approach to the bottom-up assessment of pharmacokinetics in obese patients: expected variations in clearance. Ghobadi C; Johnson TN; Aarabi M; Almond LM; Allabi AC; Rowland-Yeo K; Jamei M; Rostami-Hodjegan A Clin Pharmacokinet; 2011 Dec; 50(12):809-22. PubMed ID: 22087867 [TBL] [Abstract][Full Text] [Related]
2. Differences in cytochrome p450-mediated pharmacokinetics between chinese and caucasian populations predicted by mechanistic physiologically based pharmacokinetic modelling. Barter ZE; Tucker GT; Rowland-Yeo K Clin Pharmacokinet; 2013 Dec; 52(12):1085-100. PubMed ID: 23818090 [TBL] [Abstract][Full Text] [Related]
3. A semi-mechanistic model to predict the effects of liver cirrhosis on drug clearance. Johnson TN; Boussery K; Rowland-Yeo K; Tucker GT; Rostami-Hodjegan A Clin Pharmacokinet; 2010 Mar; 49(3):189-206. PubMed ID: 20170207 [TBL] [Abstract][Full Text] [Related]
4. Developmental changes in the liver weight- and body weight-normalized clearance of theophylline, phenytoin and cyclosporine in children. Kanamori M; Takahashi H; Echizen H Int J Clin Pharmacol Ther; 2002 Nov; 40(11):485-92. PubMed ID: 12698985 [TBL] [Abstract][Full Text] [Related]
5. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Johnson TN; Rostami-Hodjegan A; Tucker GT Clin Pharmacokinet; 2006; 45(9):931-56. PubMed ID: 16928154 [TBL] [Abstract][Full Text] [Related]
6. Physiologically Based Pharmacokinetic Modelling to Identify Physiological and Drug Parameters Driving Pharmacokinetics in Obese Individuals. Berton M; Bettonte S; Stader F; Battegay M; Marzolini C Clin Pharmacokinet; 2023 Feb; 62(2):277-295. PubMed ID: 36571702 [TBL] [Abstract][Full Text] [Related]
8. Prediction of in vivo drug clearance from in vitro data. II: potential inter-ethnic differences. Inoue S; Howgate EM; Rowland-Yeo K; Shimada T; Yamazaki H; Tucker GT; Rostami-Hodjegan A Xenobiotica; 2006 Jun; 36(6):499-513. PubMed ID: 16865818 [TBL] [Abstract][Full Text] [Related]
9. The integration of allometry and virtual populations to predict clearance and clearance variability in pediatric populations over the age of 6 years. Edginton AN; Shah B; Sevestre M; Momper JD Clin Pharmacokinet; 2013 Aug; 52(8):693-703. PubMed ID: 23588537 [TBL] [Abstract][Full Text] [Related]
10. Population Pharmacokinetics and Pharmacodynamics of Meropenem in Nonobese, Obese, and Morbidly Obese Patients. Chung EK; Cheatham SC; Fleming MR; Healy DP; Kays MB J Clin Pharmacol; 2017 Mar; 57(3):356-368. PubMed ID: 27530916 [TBL] [Abstract][Full Text] [Related]
11. The influence of obesity on the pharmacokinetics of oral alprazolam and triazolam. Abernethy DR; Greenblatt DJ; Divoll M; Smith RB; Shader RI Clin Pharmacokinet; 1984; 9(2):177-83. PubMed ID: 6143633 [TBL] [Abstract][Full Text] [Related]
12. Preterm Physiologically Based Pharmacokinetic Model. Part II: Applications of the Model to Predict Drug Pharmacokinetics in the Preterm Population. Abduljalil K; Pan X; Pansari A; Jamei M; Johnson TN Clin Pharmacokinet; 2020 Apr; 59(4):501-518. PubMed ID: 31587145 [TBL] [Abstract][Full Text] [Related]
13. Midazolam pharmacokinetics in morbidly obese patients following semi-simultaneous oral and intravenous administration: a comparison with healthy volunteers. Brill MJ; van Rongen A; Houwink AP; Burggraaf J; van Ramshorst B; Wiezer RJ; van Dongen EP; Knibbe CA Clin Pharmacokinet; 2014 Oct; 53(10):931-41. PubMed ID: 25141974 [TBL] [Abstract][Full Text] [Related]
14. Prediction of drug clearance in a smoking population: modeling the impact of variable cigarette consumption on the induction of CYP1A2. Plowchalk DR; Rowland Yeo K Eur J Clin Pharmacol; 2012 Jun; 68(6):951-60. PubMed ID: 22258279 [TBL] [Abstract][Full Text] [Related]
15. Effect of fasting and obesity in humans on the 6-hydroxylation of chlorzoxazone: a putative probe of CYP2E1 activity. O'Shea D; Davis SN; Kim RB; Wilkinson GR Clin Pharmacol Ther; 1994 Oct; 56(4):359-67. PubMed ID: 7955797 [TBL] [Abstract][Full Text] [Related]
16. An interaction between the cytochrome P450 probe substrates chlorzoxazone (CYP2E1) and midazolam (CYP3A). Palmer JL; Scott RJ; Gibson A; Dickins M; Pleasance S Br J Clin Pharmacol; 2001 Nov; 52(5):555-61. PubMed ID: 11736864 [TBL] [Abstract][Full Text] [Related]
17. In vivo comparisons of constitutive cytochrome P450 3A activity assessed by alprazolam, triazolam, and midazolam. Masica AL; Mayo G; Wilkinson GR Clin Pharmacol Ther; 2004 Oct; 76(4):341-9. PubMed ID: 15470333 [TBL] [Abstract][Full Text] [Related]
18. Effect of obesity on the pharmacokinetics of drugs in humans. Hanley MJ; Abernethy DR; Greenblatt DJ Clin Pharmacokinet; 2010; 49(2):71-87. PubMed ID: 20067334 [TBL] [Abstract][Full Text] [Related]
19. Caffeine pharmacokinetics in obesity and following significant weight reduction. Caraco Y; Zylber-Katz E; Berry EM; Levy M Int J Obes Relat Metab Disord; 1995 Apr; 19(4):234-9. PubMed ID: 7627246 [TBL] [Abstract][Full Text] [Related]
20. Evaluating a physiologically based pharmacokinetic model for prediction of omeprazole clearance and assessing ethnic sensitivity in CYP2C19 metabolic pathway. Feng S; Cleary Y; Parrott N; Hu P; Weber C; Wang Y; Yin OQ; Shi J Eur J Clin Pharmacol; 2015 May; 71(5):617-24. PubMed ID: 25801493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]