These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22087913)

  • 1. A neurocognitive model of recognition and pitch segregation.
    McLachlan N
    J Acoust Soc Am; 2011 Nov; 130(5):2845-54. PubMed ID: 22087913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ARTSTREAM: a neural network model of auditory scene analysis and source segregation.
    Grossberg S; Govindarajan KK; Wyse LL; Cohen MA
    Neural Netw; 2004 May; 17(4):511-36. PubMed ID: 15109681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of temporal fine structure information for the low pitch of high-frequency complex tones.
    Santurette S; Dau T
    J Acoust Soc Am; 2011 Jan; 129(1):282-92. PubMed ID: 21303009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speaker normalization using cortical strip maps: a neural model for steady-state vowel categorization.
    Ames H; Grossberg S
    J Acoust Soc Am; 2008 Dec; 124(6):3918-36. PubMed ID: 19206817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational model of human pitch strength and height judgments.
    McLachlan N
    Hear Res; 2009 Mar; 249(1-2):23-35. PubMed ID: 19271312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of tone duration and intertone interval on the discrimination of frequency contours in a macaque monkey.
    Brosch M; Oshurkova E; Bucks C; Scheich H
    Neurosci Lett; 2006 Oct; 406(1-2):97-101. PubMed ID: 16901633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A proposed neural mechanism underlying auditory continuity illusions.
    Vinnik E; Itskov P; Balaban E
    J Acoust Soc Am; 2010 Jul; 128(1):EL20-5. PubMed ID: 20649184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The perceptual enhancement of tones by frequency shifts.
    Demany L; Carcagno S; Semal C
    Hear Res; 2013 Apr; 298():10-6. PubMed ID: 23376551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computer model of medial efferent suppression in the mammalian auditory system.
    Ferry RT; Meddis R
    J Acoust Soc Am; 2007 Dec; 122(6):3519-26. PubMed ID: 18247760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release from interference in auditory working memory for pitch.
    Ries DT; DiGiovanni JJ
    Hear Res; 2007 Aug; 230(1-2):64-72. PubMed ID: 17574355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Principal pitch of frequency-modulated tones with asymmetrical modulation waveform: a comparison of models.
    Etchemendy PE; Eguia MC; Mesz B
    J Acoust Soc Am; 2014 Mar; 135(3):1344-55. PubMed ID: 24606273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Auditory memory and multi-tone sequences: effects of proportionality of tone duration].
    Prosser S; Peronio M
    Acta Otorhinolaryngol Ital; 1995 Feb; 15(1):2-8. PubMed ID: 7597898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociation of procedural and semantic memory in absolute-pitch processing.
    Hsieh IH; Saberi K
    Hear Res; 2008 Jun; 240(1-2):73-9. PubMed ID: 18430531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influences of multiple memory systems on auditory mental image acuity.
    Navarro Cebrian A; Janata P
    J Acoust Soc Am; 2010 May; 127(5):3189-202. PubMed ID: 21117767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of speech-intrinsic variations on human and automatic recognition of spoken phonemes.
    Meyer BT; Brand T; Kollmeier B
    J Acoust Soc Am; 2011 Jan; 129(1):388-403. PubMed ID: 21303019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective listening of concurrent auditory stimuli: an event-related potential study.
    Rao A; Zhang Y; Miller S
    Hear Res; 2010 Sep; 268(1-2):123-32. PubMed ID: 20595021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative analysis of spectral mechanisms involved in auditory detection of coloration by a single wall reflection.
    Buchholz JM
    Hear Res; 2011 Jul; 277(1-2):192-203. PubMed ID: 21236325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consonance and pitch.
    McLachlan N; Marco D; Light M; Wilson S
    J Exp Psychol Gen; 2013 Nov; 142(4):1142-58. PubMed ID: 23294344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of recurrent tonal information on auditory working memory for pitch.
    Ries DT; DiGiovanni JJ
    Hear Res; 2009 Sep; 255(1-2):14-21. PubMed ID: 19435599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.