These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22088012)

  • 1. Optical nucleation of bubble clouds in a high pressure spherical resonator.
    Anderson P; Sampathkumar A; Murray TW; Gaitan DF; Glynn Holt R
    J Acoust Soc Am; 2011 Nov; 130(5):3389-95. PubMed ID: 22088012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field.
    Chen H; Li X; Wan M
    Ultrason Sonochem; 2006 Sep; 13(6):480-6. PubMed ID: 16571378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple observations of cavitation cluster dynamics close to an ultrasonic horn tip.
    Birkin PR; Offin DG; Vian CJ; Leighton TG
    J Acoust Soc Am; 2011 Nov; 130(5):3379-88. PubMed ID: 22088011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical study of the acoustic field in a spherical resonator for single bubble sonoluminescence.
    Dellavale D; Urteaga R; Bonetto FJ
    J Acoust Soc Am; 2010 Jan; 127(1):186-97. PubMed ID: 20058963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring and modeling the bubble population produced by an underwater explosion.
    Holt FD; Lee Culver R
    J Acoust Soc Am; 2011 Nov; 130(5):3309-20. PubMed ID: 22088003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the bubble cap film thickness of bursting bubbles from their acoustic emissions.
    Deane GB
    J Acoust Soc Am; 2013 Feb; 133(2):EL69-75. PubMed ID: 23363196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvements to the methods used to measure bubble attenuation using an underwater acoustical resonator.
    Czerski H; Vagle S; Farmer DM; Hall-Patch N
    J Acoust Soc Am; 2011 Nov; 130(5):3421-30. PubMed ID: 22088016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the bubble transport mechanism in an acoustic standing wave field.
    Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A
    Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam.
    Manzi NJ; Chitnis PV; Holt RG; Roy RA; Cleveland RO; Riemer B; Wendel M
    J Acoust Soc Am; 2010 Apr; 127(4):2231-9. PubMed ID: 20370004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of an acoustic mode by an elastic mode of a liquid-filled spherical shell resonator.
    Lonzaga JB; Raymond JL; Mobley J; Gaitan DF
    J Acoust Soc Am; 2011 Feb; 129(2):597-603. PubMed ID: 21361418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The acoustic emissions of cavitation bubbles in stretched vortices.
    Chang NA; Ceccio SL
    J Acoust Soc Am; 2011 Nov; 130(5):3209-19. PubMed ID: 22087993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of internal resistance of a Helmholtz resonator on acoustic energy reduction in enclosures.
    Yu G; Li D; Cheng L
    J Acoust Soc Am; 2008 Dec; 124(6):3534-43. PubMed ID: 19206783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-speed observation of cavitation bubble clouds near a tissue boundary in high-intensity focused ultrasound fields.
    Chen H; Li X; Wan M; Wang S
    Ultrasonics; 2009 Mar; 49(3):289-92. PubMed ID: 19041998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consistency in statistical moments as a test for bubble cloud clustering.
    Weber TC; Lyons AP; Bradley DL
    J Acoust Soc Am; 2011 Nov; 130(5):3396-405. PubMed ID: 22088013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regimes of bubble volume oscillations in a pipe.
    Jeurissen R; Wijshoff H; van den Berg M; Reinten H; Lohse D
    J Acoust Soc Am; 2011 Nov; 130(5):3220-32. PubMed ID: 22087994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibration of a single microcapsule with a hard plastic shell in an acoustic standing wave field.
    Koyama D; Kotera H; Kitazawa N; Yoshida K; Nakamura K; Watanabe Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):737-43. PubMed ID: 21507751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.
    Antao DS; Farouk B
    J Acoust Soc Am; 2013 Aug; 134(2):917-32. PubMed ID: 23927091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of static pressure on the inertial cavitation threshold.
    Bader KB; Raymond JL; Mobley J; Church CC; Felipe Gaitan D
    J Acoust Soc Am; 2012 Aug; 132(2):728-37. PubMed ID: 22894195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of coupling on bubble fragmentation acoustics.
    Czerski H; Deane GB
    J Acoust Soc Am; 2011 Jan; 129(1):74-84. PubMed ID: 21302989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.