BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22088019)

  • 1. Effect of temperature on rectified diffusion during ultrasound-induced heating.
    Webb IR; Payne SJ; Coussios CC
    J Acoust Soc Am; 2011 Nov; 130(5):3450-7. PubMed ID: 22088019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling cavitation nucleation from laser-illuminated nanoparticles subjected to acoustic stress.
    Wu T; Farny CH; Roy RA; Holt RG
    J Acoust Soc Am; 2011 Nov; 130(5):3252-63. PubMed ID: 22087997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of temperature and viscoelasticity on cavitation dynamics during ultrasonic ablation.
    Webb IR; Payne SJ; Coussios CC
    J Acoust Soc Am; 2011 Nov; 130(5):3458-66. PubMed ID: 22088020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bubble growth by rectified diffusion at high gas supersaturation levels.
    Ilinskii YA; Wilson PS; Hamilton MF
    J Acoust Soc Am; 2008 Oct; 124(4):1950-5. PubMed ID: 19062834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fractional Fourier transform analysis of a bubble excited by an ultrasonic chirp.
    Barlow E; Mulholland AJ
    J Acoust Soc Am; 2011 Nov; 130(5):3264-70. PubMed ID: 22087998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of static pressure on the strength of inertial cavitation events.
    Bader KB; Mobley J; Church CC; Gaitan DF
    J Acoust Soc Am; 2012 Oct; 132(4):2286-91. PubMed ID: 23039425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field.
    Chen H; Li X; Wan M
    Ultrason Sonochem; 2006 Sep; 13(6):480-6. PubMed ID: 16571378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative observations of cavitation activity in a viscoelastic medium.
    Collin JR; Coussios CC
    J Acoust Soc Am; 2011 Nov; 130(5):3289-96. PubMed ID: 22088001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound.
    Kreider W; Crum LA; Bailey MR; Sapozhnikov OA
    J Acoust Soc Am; 2011 Nov; 130(5):3511-30. PubMed ID: 22088026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of static pressure on the inertial cavitation threshold.
    Bader KB; Raymond JL; Mobley J; Church CC; Felipe Gaitan D
    J Acoust Soc Am; 2012 Aug; 132(2):728-37. PubMed ID: 22894195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bubble dynamics in a standing sound field: the bubble habitat.
    Koch P; Kurz T; Parlitz U; Lauterborn W
    J Acoust Soc Am; 2011 Nov; 130(5):3370-8. PubMed ID: 22088010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of noninertial cavitation produced by an ultrasonic horn.
    Birkin PR; Offin DG; Vian CJ; Leighton TG; Maksimov AO
    J Acoust Soc Am; 2011 Nov; 130(5):3297-308. PubMed ID: 22088002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bubble growth within the skin by rectified diffusion might play a significant role in sonophoresis.
    Lavon I; Grossman N; Kost J; Kimmel E; Enden G
    J Control Release; 2007 Feb; 117(2):246-55. PubMed ID: 17197050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppressing shape instabilities to discover the Bjerknes force instability (L).
    Alibakhshi MA; Holt RG
    J Acoust Soc Am; 2011 Nov; 130(5):3321-4. PubMed ID: 22088004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the accommodation coefficient on nonlinear bubble oscillations.
    Fuster D; Hauke G; Dopazo C
    J Acoust Soc Am; 2010 Jul; 128(1):5-10. PubMed ID: 20649195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dynamics of the aspheric encapsulated bubble.
    Shao W; Chen W
    J Acoust Soc Am; 2013 Jan; 133(1):119-26. PubMed ID: 23297888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigations in the physical mechanism of sonocrystallization.
    Nalajala VS; Moholkar VS
    Ultrason Sonochem; 2011 Jan; 18(1):345-55. PubMed ID: 20674452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical microbubble dynamics in a viscoelastic medium at capillary breaching thresholds.
    Patterson B; Miller DL; Johnsen E
    J Acoust Soc Am; 2012 Dec; 132(6):3770-7. PubMed ID: 23231107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.