These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22088022)

  • 61. Effects of cell spatial organization and size distribution on ultrasound backscattering.
    Saha RK; Kolios MC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2118-31. PubMed ID: 21989875
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Parametric (integrated backscatter and attenuation) images constructed using backscattered radio frequency signals (25-56 MHz) from human aortae in vitro.
    Bridal SL; Fornès P; Bruneval P; Berger G
    Ultrasound Med Biol; 1997; 23(2):215-29. PubMed ID: 9140180
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Shell waves and acoustic scattering from ultrasound contrast agents.
    Allen JS; Kruse DE; Ferrara KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Mar; 48(2):409-18. PubMed ID: 11370354
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Frequency and pressure dependent attenuation and scattering by microbubbles.
    Tang MX; Eckersley RJ
    Ultrasound Med Biol; 2007 Jan; 33(1):164-8. PubMed ID: 17189060
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Acoustic characterization in whole blood and plasma of site-targeted nanoparticle ultrasound contrast agent for molecular imaging.
    Hughes MS; Marsh JN; Hall CS; Fuhrhop RW; Lacy EK; Lanza GM; Wickline SA
    J Acoust Soc Am; 2005 Feb; 117(2):964-72. PubMed ID: 15759715
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An acoustic microscopy technique to assess particle size and distribution following needle-free injection.
    Condliffe J; Schiffter HA; Cleveland RO; Coussios CC
    J Acoust Soc Am; 2010 Apr; 127(4):2252-61. PubMed ID: 20370006
    [TBL] [Abstract][Full Text] [Related]  

  • 67. An in vitro study of a microbubble contrast agent using a clinical ultrasound imaging system.
    Sboros V; Moran CM; Pye SD; McDicken WN
    Phys Med Biol; 2004 Jan; 49(1):159-73. PubMed ID: 14971779
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ultrasound assessment of the conversion of sound energy into heat in tissue phantoms enriched with magnetic micro- and nanoparticles.
    Gambin B; Kruglenko E; Tymkiewicz R; Litniewski J
    Med Phys; 2019 Oct; 46(10):4361-4370. PubMed ID: 31359439
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ultrasonic characterization of tissues via backscatter frequency dependence.
    Stetson P; Sommer G
    Ultrasound Med Biol; 1997; 23(7):989-96. PubMed ID: 9330443
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2010 Apr; 37(4):1440-8. PubMed ID: 20443465
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ultrasonic attenuation and backscatter from flowing whole blood are dependent on shear rate and hematocrit between 10 and 50 MHz.
    Huang CC; Chang YC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):357-68. PubMed ID: 21342821
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Measurement of the ultrasonic properties of vascular tissues and blood from 35-65 MHz.
    Lockwood GR; Ryan LK; Hunt JW; Foster FS
    Ultrasound Med Biol; 1991; 17(7):653-66. PubMed ID: 1781068
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ultrasound backscatter and attenuation in human liver with diffuse disease.
    Lu ZF; Zagzebski JA; Lee FT
    Ultrasound Med Biol; 1999 Sep; 25(7):1047-54. PubMed ID: 10574336
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of acoustic insonation parameters on ultrasound contrast agent destruction.
    Yeh CK; Su SY
    Ultrasound Med Biol; 2008 Aug; 34(8):1281-91. PubMed ID: 18343019
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Echogenic liposome compositions for increased retention of ultrasound reflectivity at physiologic temperature.
    Buchanan KD; Huang S; Kim H; Macdonald RC; McPherson DD
    J Pharm Sci; 2008 Jun; 97(6):2242-9. PubMed ID: 17894368
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Pressure-dependent attenuation and scattering of phospholipid-coated microbubbles at low acoustic pressures.
    Emmer M; Vos HJ; Goertz DE; van Wamel A; Versluis M; de Jong N
    Ultrasound Med Biol; 2009 Jan; 35(1):102-11. PubMed ID: 18829153
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Ultrasonic characterization of the nonlinear properties of contrast microbubbles.
    Shi WT; Forsberg F
    Ultrasound Med Biol; 2000 Jan; 26(1):93-104. PubMed ID: 10687797
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ultrasound backscatter imaging provides frequency-dependent information on structure, composition and mechanical properties of human trabecular bone.
    Karjalainen JP; Töyräs J; Riekkinen O; Hakulinen M; Jurvelin JS
    Ultrasound Med Biol; 2009 Aug; 35(8):1376-84. PubMed ID: 19525060
    [TBL] [Abstract][Full Text] [Related]  

  • 79. High-frequency backscatter and attenuation measurements of selected bovine tissues between 10 and 30 MHz.
    Maruvada S; Shung KK; Wang SH
    Ultrasound Med Biol; 2000 Jul; 26(6):1043-9. PubMed ID: 10996704
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Reference characterisation of sound speed and attenuation of the IEC agar-based tissue-mimicking material up to a frequency of 60 MHz.
    Rajagopal S; Sadhoo N; Zeqiri B
    Ultrasound Med Biol; 2015 Jan; 41(1):317-33. PubMed ID: 25220268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.