These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 22088027)
1. Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles. Kreider W; Crum LA; Bailey MR; Sapozhnikov OA J Acoust Soc Am; 2011 Nov; 130(5):3531-40. PubMed ID: 22088027 [TBL] [Abstract][Full Text] [Related]
2. A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound. Kreider W; Crum LA; Bailey MR; Sapozhnikov OA J Acoust Soc Am; 2011 Nov; 130(5):3511-30. PubMed ID: 22088026 [TBL] [Abstract][Full Text] [Related]
3. A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro. Cleveland RO; Sapozhnikov OA; Bailey MR; Crum LA J Acoust Soc Am; 2000 Mar; 107(3):1745-58. PubMed ID: 10738826 [TBL] [Abstract][Full Text] [Related]
4. Lithotripter shock wave interaction with a bubble near various biomaterials. Ohl SW; Klaseboer E; Szeri AJ; Khoo BC Phys Med Biol; 2016 Oct; 61(19):7031-7053. PubMed ID: 27649337 [TBL] [Abstract][Full Text] [Related]
5. Transient oscillation of cavitation bubbles near stone surface during electrohydraulic lithotripsy. Zhong P; Tong HL; Cocks FH; Preminger GM J Endourol; 1997 Feb; 11(1):55-61. PubMed ID: 9048300 [TBL] [Abstract][Full Text] [Related]
6. Bubble proliferation in the cavitation field of a shock wave lithotripter. Pishchalnikov YA; Williams JC; McAteer JA J Acoust Soc Am; 2011 Aug; 130(2):EL87-93. PubMed ID: 21877776 [TBL] [Abstract][Full Text] [Related]
8. The dynamics of a non-equilibrium bubble near bio-materials. Ohl SW; Klaseboer E; Khoo BC Phys Med Biol; 2009 Oct; 54(20):6313-36. PubMed ID: 19809103 [TBL] [Abstract][Full Text] [Related]
9. Shock-induced collapse of a gas bubble in shockwave lithotripsy. Johnsen E; Colonius T J Acoust Soc Am; 2008 Oct; 124(4):2011-20. PubMed ID: 19062841 [TBL] [Abstract][Full Text] [Related]
10. Optical nucleation of bubble clouds in a high pressure spherical resonator. Anderson P; Sampathkumar A; Murray TW; Gaitan DF; Glynn Holt R J Acoust Soc Am; 2011 Nov; 130(5):3389-95. PubMed ID: 22088012 [TBL] [Abstract][Full Text] [Related]
11. The influence of gas diffusion on bubble persistence in shock-scattering histotripsy. Bader KB; Bollen V J Acoust Soc Am; 2018 Jun; 143(6):EL481. PubMed ID: 29960422 [TBL] [Abstract][Full Text] [Related]
12. Multiple observations of cavitation cluster dynamics close to an ultrasonic horn tip. Birkin PR; Offin DG; Vian CJ; Leighton TG J Acoust Soc Am; 2011 Nov; 130(5):3379-88. PubMed ID: 22088011 [TBL] [Abstract][Full Text] [Related]
13. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound. Brujan EA; Ikeda T; Matsumoto Y Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL. Zhong P; Zhou Y; Zhu S Ultrasound Med Biol; 2001 Jan; 27(1):119-34. PubMed ID: 11295278 [TBL] [Abstract][Full Text] [Related]
15. Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves. Pishchalnikov YA; Sapozhnikov OA; Bailey MR; Williams JC; Cleveland RO; Colonius T; Crum LA; Evan AP; McAteer JA J Endourol; 2003 Sep; 17(7):435-46. PubMed ID: 14565872 [TBL] [Abstract][Full Text] [Related]
16. Dissimilar cavitation dynamics and damage patterns produced by parallel fiber alignment to the stone surface in holmium:yttrium aluminum garnet laser lithotripsy. Xiang G; Li D; Chen J; Mishra A; Sankin G; Zhao X; Tang Y; Wang K; Yao J; Zhong P Phys Fluids (1994); 2023 Mar; 35(3):033303. PubMed ID: 36896246 [TBL] [Abstract][Full Text] [Related]
17. Numerical investigation of shock-induced bubble collapse dynamics and fluid-solid interactions during shock-wave lithotripsy. Koukas E; Papoutsakis A; Gavaises M Ultrason Sonochem; 2023 May; 95():106393. PubMed ID: 37031534 [TBL] [Abstract][Full Text] [Related]
18. Giant and explosive plasmonic bubbles by delayed nucleation. Wang Y; Zaytsev ME; Lajoinie G; The HL; Eijkel JCT; van den Berg A; Versluis M; Weckhuysen BM; Zhang X; Zandvliet HJW; Lohse D Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7676-7681. PubMed ID: 29997175 [TBL] [Abstract][Full Text] [Related]
19. Dependence of the characteristics of bubbles on types of sonochemical reactors. Yasui K; Tuziuti T; Iida Y Ultrason Sonochem; 2005 Jan; 12(1-2):43-51. PubMed ID: 15474951 [TBL] [Abstract][Full Text] [Related]
20. The influence of fluid properties and pulse amplitude on bubble dynamics in the field of a shock wave lithotripter. Choi MJ; Coleman AJ; Saunders JE Phys Med Biol; 1993 Nov; 38(11):1561-73. PubMed ID: 8272432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]