These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22088045)

  • 1. Communication: limitations of the stochastic quasi-steady-state approximation in open biochemical reaction networks.
    Thomas P; Straube AV; Grima R
    J Chem Phys; 2011 Nov; 135(18):181103. PubMed ID: 22088045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic quasi-steady state approximations for asymptotic solutions of the chemical master equation.
    Alarcón T
    J Chem Phys; 2014 May; 140(18):184109. PubMed ID: 24832255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation.
    Macnamara S; Bersani AM; Burrage K; Sidje RB
    J Chem Phys; 2008 Sep; 129(9):095105. PubMed ID: 19044893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. About and beyond the Henri-Michaelis-Menten rate equation for single-substrate enzyme kinetics.
    Bajzer Z; Strehler EE
    Biochem Biophys Res Commun; 2012 Jan; 417(3):982-5. PubMed ID: 22206668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two classes of quasi-steady-state model reductions for stochastic kinetics.
    Mastny EA; Haseltine EL; Rawlings JB
    J Chem Phys; 2007 Sep; 127(9):094106. PubMed ID: 17824731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zero-order ultrasensitivity: a study of criticality and fluctuations under the total quasi-steady state approximation in the linear noise regime.
    Jithinraj PK; Roy U; Gopalakrishnan M
    J Theor Biol; 2014 Mar; 344():1-11. PubMed ID: 24309434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic theory of large-scale enzyme-reaction networks: finite copy number corrections to rate equation models.
    Thomas P; Straube AV; Grima R
    J Chem Phys; 2010 Nov; 133(19):195101. PubMed ID: 21090871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.
    Grima R
    J Chem Phys; 2010 Jul; 133(3):035101. PubMed ID: 20649359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noise slows the rate of Michaelis-Menten reactions.
    Van Dyken JD
    J Theor Biol; 2017 Oct; 430():21-31. PubMed ID: 28676416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Validity of the Stochastic Quasi-Steady-State Approximation in Open Enzyme Catalyzed Reactions: Timescale Separation or Singular Perturbation?
    Eilertsen J; Schnell S
    Bull Math Biol; 2021 Nov; 84(1):7. PubMed ID: 34825985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of the Michaelis-Menten approximation when analysing effects of molecular noise.
    Lawson MJ; Petzold L; Hellander A
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25833240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of the accuracy of moment-closure approximations for stochastic chemical kinetics.
    Grima R
    J Chem Phys; 2012 Apr; 136(15):154105. PubMed ID: 22519313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The slow-scale linear noise approximation: an accurate, reduced stochastic description of biochemical networks under timescale separation conditions.
    Thomas P; Straube AV; Grima R
    BMC Syst Biol; 2012 May; 6():39. PubMed ID: 22583770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient stochastic simulations of complex reaction networks on surfaces.
    Barzel B; Biham O
    J Chem Phys; 2007 Oct; 127(14):144703. PubMed ID: 17935419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rigorous elimination of fast stochastic variables from the linear noise approximation using projection operators.
    Thomas P; Grima R; Straube AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041110. PubMed ID: 23214532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactant stationary approximation in enzyme kinetics.
    Hanson SM; Schnell S
    J Phys Chem A; 2008 Sep; 112(37):8654-8. PubMed ID: 18714952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule enzymology à la Michaelis-Menten.
    Grima R; Walter NG; Schnell S
    FEBS J; 2014 Jan; 281(2):518-30. PubMed ID: 24289171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validity of quasi-steady-state and transfer-function representations for input-output relation in a Michaelis-Menten reaction.
    Sakamoto N
    Biotechnol Bioeng; 1986 Aug; 28(8):1191-9. PubMed ID: 18555445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The complex chemical Langevin equation.
    Schnoerr D; Sanguinetti G; Grima R
    J Chem Phys; 2014 Jul; 141(2):024103. PubMed ID: 25027995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.