BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 220881)

  • 1. Is the function of the renal papilla coupled exclusively to an anaerobic pattern of metabolism?
    Cohen JJ
    Am J Physiol; 1979 May; 236(5):F423-33. PubMed ID: 220881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical characterization and osmolytes in papillary collecting ducts from pig and dog kidneys.
    Boulanger Y; Legault P; Tejedor A; Vinay P; Theriault Y
    Can J Physiol Pharmacol; 1988 Oct; 66(10):1282-90. PubMed ID: 3240411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification of rat papillary collecting duct cells: functional and metabolic assessment.
    Stokes JB; Grupp C; Kinne RK
    Am J Physiol; 1987 Aug; 253(2 Pt 2):F251-62. PubMed ID: 3303974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative and glycolytic ATP formation of rabbit papillary muscle in oxygen and nitrogen.
    Mast F; Elzinga G
    Am J Physiol; 1990 Apr; 258(4 Pt 2):H1144-50. PubMed ID: 2331002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling of aerobic metabolism to active ion transport in the kidney.
    Balaban RS; Mandel LJ
    J Physiol; 1980 Jul; 304():331-48. PubMed ID: 6969304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling glucose metabolism and lactate production in the kidney.
    Chen Y; Fry BC; Layton AT
    Math Biosci; 2017 Jul; 289():116-129. PubMed ID: 28495544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats.
    O'Neill J; Fasching A; Pihl L; Patinha D; Franzén S; Palm F
    Am J Physiol Renal Physiol; 2015 Aug; 309(3):F227-34. PubMed ID: 26041448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of respiratory inhibitors on glycolysis in proximal tubules.
    Dickman KG; Mandel LJ
    Am J Physiol; 1990 Jun; 258(6 Pt 2):F1608-15. PubMed ID: 2163215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in renal tubular biochemistry.
    Stoff JS; Epstein FH; Narins R; Relman AS
    Annu Rev Physiol; 1976; 38():46-68. PubMed ID: 130828
    [No Abstract]   [Full Text] [Related]  

  • 10. Energy sources in fully aerobic rest-work transitions: a new role for glycolysis.
    Connett RJ; Gayeski TE; Honig CR
    Am J Physiol; 1985 Jun; 248(6 Pt 2):H922-9. PubMed ID: 4003569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining hypoxia: a systems view of VO2, glycolysis, energetics, and intracellular PO2.
    Connett RJ; Honig CR; Gayeski TE; Brooks GA
    J Appl Physiol (1985); 1990 Mar; 68(3):833-42. PubMed ID: 2187852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamic regulation of myocardial oxidative phosphorylation: analysis of the response time of oxygen consumption.
    van Beek JH; Tian X; Zuurbier CJ; de Groot B; van Echteld CJ; Eijgelshoven MH; Hak JB
    Mol Cell Biochem; 1998 Jul; 184(1-2):321-44. PubMed ID: 9746328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal oxygen and lactate metabolism in hemorrhagic shock. An experimental study.
    Nelimarkka O
    Acta Chir Scand Suppl; 1984; 518():1-44. PubMed ID: 6592913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nephron pO2 and renal oxygen usage in the hypertensive rat kidney.
    Welch WJ; Baumgärtl H; Lübbers D; Wilcox CS
    Kidney Int; 2001 Jan; 59(1):230-7. PubMed ID: 11135075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells.
    Nakashima RA; Paggi MG; Pedersen PL
    Cancer Res; 1984 Dec; 44(12 Pt 1):5702-6. PubMed ID: 6498833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sugar transport in isolated rat kidney papillary collecting duct cells.
    Grunewald RW; Kinne RK
    Pflugers Arch; 1988 Nov; 413(1):32-7. PubMed ID: 3217225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies.
    Zhou L; Stanley WC; Saidel GM; Yu X; Cabrera ME
    J Physiol; 2005 Dec; 569(Pt 3):925-37. PubMed ID: 16223766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular distribution of hexokinase in the tissue zones of rat kidney.
    Ballatori N; Cohen JJ
    Biochim Biophys Acta; 1981 Feb; 657(2):448-56. PubMed ID: 7213756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of lactic acid production during exercise.
    Katz A; Sahlin K
    J Appl Physiol (1985); 1988 Aug; 65(2):509-18. PubMed ID: 3049511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of different water metabolism conditions on energy metabolism and ionic gradients in the renal medulla].
    Natochin IuV; Babaeva AKh; Serebriakov EP; Seferova RI; Podsekaeva GV
    Fiziol Zh SSSR Im I M Sechenova; 1979 Sep; 65(9):1329-34. PubMed ID: 226422
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 21.