BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 220881)

  • 21. Modeling Glucose Metabolism in the Kidney.
    Chen Y; Fry BC; Layton AT
    Bull Math Biol; 2016 Jun; 78(6):1318-36. PubMed ID: 27371260
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of O2 in regulation of lactate dynamics during hypoxia: mathematical model and analysis.
    Cabrera ME; Saidel GM; Kalhan SC
    Ann Biomed Eng; 1998; 26(1):1-27. PubMed ID: 10355547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extramitochondrial energy production in platelets.
    Ravera S; Signorello MG; Bartolucci M; Ferrando S; Manni L; Caicci F; Calzia D; Panfoli I; Morelli A; Leoncini G
    Biol Cell; 2018 May; 110(5):97-108. PubMed ID: 29537672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A model of mitochondrial O
    Edwards A; Palm F; Layton AT
    Am J Physiol Renal Physiol; 2020 Jan; 318(1):F248-F259. PubMed ID: 31790302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glucose metabolism in dog inner medullary collecting ducts.
    Meury L; Noël J; Tejedor A; Sénécal J; Gougoux A; Vinay P
    Ren Physiol Biochem; 1994; 17(5):246-66. PubMed ID: 7527574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hyperoxia, mitochondrial redox state, and lactate metabolism of in situ canine muscle.
    Wolfe BR; Graham TE; Barclay JK
    Am J Physiol; 1987 Aug; 253(2 Pt 1):C263-8. PubMed ID: 3618762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glycolytic and oxidative metabolism in primary renal proximal tubule cultures.
    Dickman KG; Mandel LJ
    Am J Physiol; 1989 Aug; 257(2 Pt 1):C333-40. PubMed ID: 2764094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of mitochondrial respiratory function in highly glycolytic glioma cells reveals low ADP phosphorylation in relation to oxidative capacity.
    Rodrigues-Silva E; Siqueira-Santos ES; Ruas JS; Ignarro RS; Figueira TR; Rogério F; Castilho RF
    J Neurooncol; 2017 Jul; 133(3):519-529. PubMed ID: 28540666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kidney outer medulla mitochondria are more efficient compared with cortex mitochondria as a strategy to sustain ATP production in a suboptimal environment.
    Schiffer TA; Gustafsson H; Palm F
    Am J Physiol Renal Physiol; 2018 Sep; 315(3):F677-F681. PubMed ID: 29846107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glycogen metabolism in dog inner medullary collecting ducts.
    Meury L; Sénécal J; Noël J; Vinay P
    Am J Physiol; 1994 Mar; 266(3 Pt 2):F375-83. PubMed ID: 8160785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low glucose stress decreases cellular NADH and mitochondrial ATP in colonic epithelial cancer cells: Influence of mitochondrial substrates.
    Circu ML; Maloney RE; Aw TY
    Chem Biol Interact; 2017 Feb; 264():16-24. PubMed ID: 28087461
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs.
    Zhou L; Cabrera ME; Huang H; Yuan CL; Monika DK; Sharma N; Bian F; Stanley WC
    J Physiol; 2007 Mar; 579(Pt 3):811-21. PubMed ID: 17185335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glycolytic and oxidative metabolism in relation to retinal function.
    Winkler BS
    J Gen Physiol; 1981 Jun; 77(6):667-92. PubMed ID: 6267165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of Na+ and K+ transport with aerobic energy metabolism in slices of Morris hepatoma 3924A.
    Galeotti T; van Rossum GD; Russo MA; Palombini G
    Cancer Res; 1976 Nov; 36(11 Pt 1):4175-84. PubMed ID: 184927
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy metabolism of renal cell lines, A6 and MDCK: regulation by Na-K-ATPase.
    Lynch RM; Balaban RS
    Am J Physiol; 1987 Feb; 252(2 Pt 1):C225-31. PubMed ID: 3030121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intracellular oxygen supply during hypoxia.
    Jones DP; Kennedy FG
    Am J Physiol; 1982 Nov; 243(5):C247-53. PubMed ID: 7137335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of oxidative metabolism in volume-overloaded rat hearts: effect of propionyl-L-carnitine.
    El Alaoui-Talibi Z; Guendouz A; Moravec M; Moravec J
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H1615-24. PubMed ID: 9139943
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy metabolism in the ischemic heart.
    Rovetto MJ
    Tex Rep Biol Med; 1979; 39():397-407. PubMed ID: 553321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Postnatal changes of some enzymatic activities of energy supplying metabolism in the cortex, inner and outer medulla of the rat kidney.
    Nováková J; Capek K; Bass A; Teisinger J; Vítek V; Popp M
    Physiol Bohemoslov; 1980; 29(4):289-98. PubMed ID: 6448414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.