BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 22088433)

  • 21. Renal medullary concentrating process: an integrative hypothesis.
    Bonventre JV; Lechene C
    Am J Physiol; 1980 Dec; 239(6):F578-88. PubMed ID: 7446733
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cycles and separations in a model of the renal medulla.
    Thomas SR
    Am J Physiol; 1998 Nov; 275(5):F671-90. PubMed ID: 9815126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mathematical model of the rat kidney. II. Antidiuresis.
    Weinstein AM
    Am J Physiol Renal Physiol; 2020 Apr; 318(4):F936-F955. PubMed ID: 32088967
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture.
    Chen J; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F537-48. PubMed ID: 19403645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mathematical model of an avian urine concentrating mechanism.
    Layton HE; Davies JM; Casotti G; Braun EJ
    Am J Physiol Renal Physiol; 2000 Dec; 279(6):F1139-60. PubMed ID: 11097634
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Profiles of water and solute transport along long-loop descending limb: analysis by mathematical model.
    Taniguchi J; Tabei K; Imai M
    Am J Physiol; 1987 Mar; 252(3 Pt 2):F393-402. PubMed ID: 3826384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms to concentrate the urine: an opinion.
    Halperin ML; Kamel KS; Oh MS
    Curr Opin Nephrol Hypertens; 2008 Jul; 17(4):416-22. PubMed ID: 18660679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interstitial water and solute recovery by inner medullary vasa recta.
    Edwards A; Delong MJ; Pallone TL
    Am J Physiol Renal Physiol; 2000 Feb; 278(2):F257-69. PubMed ID: 10662730
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Architecture of inner medullary descending and ascending vasa recta: pathways for countercurrent exchange.
    Yuan J; Pannabecker TL
    Am J Physiol Renal Physiol; 2010 Jul; 299(1):F265-72. PubMed ID: 20392798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Architecture of vasa recta in the renal inner medulla of the desert rodent Dipodomys merriami: potential impact on the urine concentrating mechanism.
    Issaian T; Urity VB; Dantzler WH; Pannabecker TL
    Am J Physiol Regul Integr Comp Physiol; 2012 Oct; 303(7):R748-56. PubMed ID: 22914749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Axial compartmentation of descending and ascending thin limbs of Henle's loops.
    Westrick KY; Serack B; Dantzler WH; Pannabecker TL
    Am J Physiol Renal Physiol; 2013 Feb; 304(3):F308-16. PubMed ID: 23195680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of varying salt and urea permeabilities along descending limbs of Henle in a model of the renal medullary urine concentrating mechanism.
    Thomas SR
    Bull Math Biol; 1991; 53(6):825-43. PubMed ID: 1958893
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of NaCl reabsorption by hamster thin ascending limbs of Henle's loop.
    Marsh DJ; Azen SP
    Am J Physiol; 1975 Jan; 228(1):71-9. PubMed ID: 1147030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of inner medullary collecting duct NaCl transport in urinary concentration.
    Chandhoke PS; Saidel GM; Knepper MA
    Am J Physiol; 1985 Nov; 249(5 Pt 2):F688-97. PubMed ID: 4061655
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-compartment model of inner medullary vasculature supports dual modes of vasopressin-regulated inner medullary blood flow.
    Kim J; Pannabecker TL
    Am J Physiol Renal Physiol; 2010 Jul; 299(1):F273-9. PubMed ID: 20392799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle.
    Dantzler WH; Layton AT; Layton HE; Pannabecker TL
    Clin J Am Soc Nephrol; 2014 Oct; 9(10):1781-9. PubMed ID: 23908457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Urea and renal function in the 21st century: insights from knockout mice.
    Fenton RA; Knepper MA
    J Am Soc Nephrol; 2007 Mar; 18(3):679-88. PubMed ID: 17251384
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration.
    Fry BC; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2015 May; 308(9):F967-80. PubMed ID: 25651567
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A mathematical model of the rat kidney: K
    Weinstein AM
    Am J Physiol Renal Physiol; 2017 Jun; 312(6):F925-F950. PubMed ID: 28179254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An optimization algorithm for a distributed-loop model of an avian urine concentrating mechanism.
    Marcano M; Layton AT; Layton HE
    Bull Math Biol; 2006 Oct; 68(7):1625-60. PubMed ID: 16967257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.