BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 2208860)

  • 1. In vivo osteochondrogenic potential of cultured cells derived from the periosteum.
    Nakahara H; Bruder SP; Goldberg VM; Caplan AI
    Clin Orthop Relat Res; 1990 Oct; (259):223-32. PubMed ID: 2208860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo.
    Nakahara H; Goldberg VM; Caplan AI
    J Orthop Res; 1991 Jul; 9(4):465-76. PubMed ID: 2045973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Culture-expanded periosteal-derived cells exhibit osteochondrogenic potential in porous calcium phosphate ceramics in vivo.
    Nakahara H; Goldberg VM; Caplan AI
    Clin Orthop Relat Res; 1992 Mar; (276):291-8. PubMed ID: 1537169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum.
    Nakahara H; Bruder SP; Haynesworth SE; Holecek JJ; Baber MA; Goldberg VM; Caplan AI
    Bone; 1990; 11(3):181-8. PubMed ID: 2390376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro differentiation potential of the periosteal cells from a membrane bone, the quadratojugal of the embryonic chick.
    Fang J; Hall BK
    Dev Biol; 1996 Dec; 180(2):701-12. PubMed ID: 8954738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteogenic phenotypes and mineralization of cultured human periosteal-derived cells.
    Park BW; Hah YS; Kim DR; Kim JR; Byun JH
    Arch Oral Biol; 2007 Oct; 52(10):983-9. PubMed ID: 17543271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative qualitative histological analysis of tissue-engineered bone using bone marrow mesenchymal stem cells, alveolar bone cells, and periosteal cells.
    Zhu SJ; Choi BH; Huh JY; Jung JH; Kim BY; Lee SH
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2006 Feb; 101(2):164-9. PubMed ID: 16448916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro studies on skeletogenic potential of membrane bone periosteal cells.
    Thorogood P
    J Embryol Exp Morphol; 1979 Dec; 54():185-207. PubMed ID: 528865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone regeneration and neovascularization processes in a pellet culture system for periosteal cells.
    Akiyama M; Nakamura M
    Cell Transplant; 2009; 18(4):443-52. PubMed ID: 19622231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of ectopic bone formation by using human periosteal cells in combination with a novel scaffold technology.
    Schantz JT; Hutmacher DW; Chim H; Ng KW; Lim TC; Teoh SH
    Cell Transplant; 2002; 11(2):125-38. PubMed ID: 12099636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The chondrogenic potential of periosteum decreases with age.
    O'Driscoll SW; Saris DB; Ito Y; Fitzimmons JS
    J Orthop Res; 2001 Jan; 19(1):95-103. PubMed ID: 11332626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells.
    Park J; Gelse K; Frank S; von der Mark K; Aigner T; Schneider H
    J Gene Med; 2006 Jan; 8(1):112-25. PubMed ID: 16142704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells.
    Nakahara H; Dennis JE; Bruder SP; Haynesworth SE; Lennon DP; Caplan AI
    Exp Cell Res; 1991 Aug; 195(2):492-503. PubMed ID: 2070830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chondrogenic potential of skeletal cell populations: selective growth of chondrocytes and their morphogenesis and development in vitro.
    Gerstenfeld LC; Toma CD; Schaffer JL; Landis WJ
    Microsc Res Tech; 1998 Oct; 43(2):156-73. PubMed ID: 9823002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Periosteum responds to dynamic fluid pressure by proliferating in vitro.
    Saris DB; Sanyal A; An KN; Fitzsimmons JS; O'Driscoll SW
    J Orthop Res; 1999 Sep; 17(5):668-77. PubMed ID: 10569475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship of donor site to chondrogenic potential of periosteum in vitro.
    Gallay SH; Miura Y; Commisso CN; Fitzsimmons JS; O'Driscoll SW
    J Orthop Res; 1994 Jul; 12(4):515-25. PubMed ID: 8064482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histochemical evidence of the initial chondrogenesis and osteogenesis in the periosteum of a rib fractured model: implications of osteocyte involvement in periosteal chondrogenesis.
    Li M; Amizuka N; Oda K; Tokunaga K; Ito T; Takeuchi K; Takagi R; Maeda T
    Microsc Res Tech; 2004 Jul; 64(4):330-42. PubMed ID: 15481050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo osteogenic properties of the composite of periosteal-derived osteoblast and collagen- coated true bone ceramics.
    Gu WW; Xu YH; Cao HQ; Zhang BD; Lu KB
    Di Yi Jun Yi Da Xue Xue Bao; 2002 Jun; 22(6):518-20. PubMed ID: 12297473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteogenic potential of cultured human periosteum-derived cells - a pilot study of human cell transplantation into a rat calvarial defect model.
    Sakata Y; Ueno T; Kagawa T; Kanou M; Fujii T; Yamachika E; Sugahara T
    J Craniomaxillofac Surg; 2006 Dec; 34(8):461-5. PubMed ID: 17157522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collagenase-3 (MMP-13) is expressed by hypertrophic chondrocytes, periosteal cells, and osteoblasts during human fetal bone development.
    Johansson N; Saarialho-Kere U; Airola K; Herva R; Nissinen L; Westermarck J; Vuorio E; Heino J; Kähäri VM
    Dev Dyn; 1997 Mar; 208(3):387-97. PubMed ID: 9056642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.