BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 22088846)

  • 1. QuRe: software for viral quasispecies reconstruction from next-generation sequencing data.
    Prosperi MC; Salemi M
    Bioinformatics; 2012 Jan; 28(1):132-3. PubMed ID: 22088846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial analysis and algorithms for quasispecies reconstruction using next-generation sequencing.
    Prosperi MC; Prosperi L; Bruselles A; Abbate I; Rozera G; Vincenti D; Solmone MC; Capobianchi MR; Ulivi G
    BMC Bioinformatics; 2011 Jan; 12():5. PubMed ID: 21208435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viral quasispecies reconstruction via tensor factorization with successive read removal.
    Ahn S; Ke Z; Vikalo H
    Bioinformatics; 2018 Jul; 34(13):i23-i31. PubMed ID: 29949976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applying next-generation sequencing to unravel the mutational landscape in viral quasispecies.
    Lu IN; Muller CP; He FQ
    Virus Res; 2020 Jul; 283():197963. PubMed ID: 32278821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A penalized regression approach to haplotype reconstruction of viral populations arising in early HIV/SIV infection.
    Leviyang S; Griva I; Ita S; Johnson WE
    Bioinformatics; 2017 Aug; 33(16):2455-2463. PubMed ID: 28379346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viral quasispecies assembly via maximal clique enumeration.
    Töpfer A; Marschall T; Bull RA; Luciani F; Schönhuth A; Beerenwinkel N
    PLoS Comput Biol; 2014 Mar; 10(3):e1003515. PubMed ID: 24675810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo haplotype reconstruction in viral quasispecies using paired-end read guided path finding.
    Chen J; Zhao Y; Sun Y
    Bioinformatics; 2018 Sep; 34(17):2927-2935. PubMed ID: 29617936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kart: a divide-and-conquer algorithm for NGS read alignment.
    Lin HN; Hsu WL
    Bioinformatics; 2017 Aug; 33(15):2281-2287. PubMed ID: 28379292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. REDHORSE-REcombination and Double crossover detection in Haploid Organisms using next-geneRation SEquencing data.
    Shaik JS; Khan A; Beverley SM; Sibley LD
    BMC Genomics; 2015 Feb; 16(1):133. PubMed ID: 25766039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full-length de novo viral quasispecies assembly through variation graph construction.
    Baaijens JA; Van der Roest B; Köster J; Stougie L; Schönhuth A
    Bioinformatics; 2019 Dec; 35(24):5086-5094. PubMed ID: 31147688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. aBayesQR: A Bayesian Method for Reconstruction of Viral Populations Characterized by Low Diversity.
    Ahn S; Vikalo H
    J Comput Biol; 2018 Jul; 25(7):637-648. PubMed ID: 29480740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of algorithms for next-generation sequencing read alignment.
    Ruffalo M; LaFramboise T; Koyutürk M
    Bioinformatics; 2011 Oct; 27(20):2790-6. PubMed ID: 21856737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QUENTIN: reconstruction of disease transmissions from viral quasispecies genomic data.
    Skums P; Zelikovsky A; Singh R; Gussler W; Dimitrova Z; Knyazev S; Mandric I; Ramachandran S; Campo D; Jha D; Bunimovich L; Costenbader E; Sexton C; O'Connor S; Xia GL; Khudyakov Y
    Bioinformatics; 2018 Jan; 34(1):163-170. PubMed ID: 29304222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of viral population structure from next-generation sequencing data using multicommodity flows.
    Skums P; Mancuso N; Artyomenko A; Tork B; Mandoiu I; Khudyakov Y; Zelikovsky A
    BMC Bioinformatics; 2013; 14 Suppl 9(Suppl 9):S2. PubMed ID: 23902469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of haplotype callers for next-generation sequencing of viruses.
    Eliseev A; Gibson KM; Avdeyev P; Novik D; Bendall ML; Pérez-Losada M; Alexeev N; Crandall KA
    Infect Genet Evol; 2020 Aug; 82():104277. PubMed ID: 32151775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSdpR: Viral quasispecies reconstruction via correlation clustering.
    Barik S; Das S; Vikalo H
    Genomics; 2018 Nov; 110(6):375-381. PubMed ID: 29268961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in inferring viral diversity from high-throughput sequencing data.
    Posada-Cespedes S; Seifert D; Beerenwinkel N
    Virus Res; 2017 Jul; 239():17-32. PubMed ID: 27693290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QuasiSeq: profiling viral quasispecies via self-tuning spectral clustering with PacBio long sequencing reads.
    Jiao X; Imamichi H; Sherman BT; Nahar R; Dewar RL; Lane HC; Imamichi T; Chang W
    Bioinformatics; 2022 Jun; 38(12):3192-3199. PubMed ID: 35532087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NeatFreq: reference-free data reduction and coverage normalization for De Novo sequence assembly.
    McCorrison JM; Venepally P; Singh I; Fouts DE; Lasken RS; Methé BA
    BMC Bioinformatics; 2014 Nov; 15(1):357. PubMed ID: 25407910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating Fitness of Viral Quasispecies from Next-Generation Sequencing Data.
    Seifert D; Beerenwinkel N
    Curr Top Microbiol Immunol; 2016; 392():181-200. PubMed ID: 26318139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.