These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 22088866)

  • 1. A prescription fraud detection model.
    Aral KD; Güvenir HA; Sabuncuoğlu I; Akar AR
    Comput Methods Programs Biomed; 2012 Apr; 106(1):37-46. PubMed ID: 22088866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting medical prescriptions suspected of fraud using an unsupervised data mining algorithm.
    Haddad Soleymani M; Yaseri M; Farzadfar F; Mohammadpour A; Sharifi F; Kabir MJ
    Daru; 2018 Dec; 26(2):209-214. PubMed ID: 30460618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using data mining to find fraud in HCFA health care claims.
    Sokol L; Garcia B; Rodriguez J; West M; Johnson K
    Top Health Inf Manage; 2001 Aug; 22(1):1-13. PubMed ID: 11680273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Creating and validating a tool able to detect fraud by prescription falsification from health insurance administration databases].
    Victorri-Vigneau C; Larour K; Simon D; Pivette J; Jolliet P
    Therapie; 2009; 64(1):27-31. PubMed ID: 19463250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-aided auditing of prescription drug claims.
    Iyengar VS; Hermiz KB; Natarajan R
    Health Care Manag Sci; 2014 Sep; 17(3):203-14. PubMed ID: 23821344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Fraud in the health-care system from the perspective of the public health insurance companies. Empirical findings on the work of anti-fraud agencies].
    Meier BD; Homann D
    Gesundheitswesen; 2010 Jul; 72(7):404-11. PubMed ID: 19890808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-stage methodology to detect health insurance claim fraud.
    Johnson ME; Nagarur N
    Health Care Manag Sci; 2016 Sep; 19(3):249-60. PubMed ID: 25600704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of fraudulent claims on health care costs.
    Kelly S
    Stat Bull Metrop Insur Co; 1991; 72(4):13-9. PubMed ID: 1792589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Fraud and Abuse Detection in General Physician Claims: A Data Mining Study.
    Joudaki H; Rashidian A; Minaei-Bidgoli B; Mahmoodi M; Geraili B; Nasiri M; Arab M
    Int J Health Policy Manag; 2015 Nov; 5(3):165-72. PubMed ID: 26927587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FraudAuditor: A Visual Analytics Approach for Collusive Fraud in Health Insurance.
    Zhou J; Wang X; Wang J; Ye H; Wang H; Zhou Z; Han D; Ying H; Wu J; Chen W
    IEEE Trans Vis Comput Graph; 2023 Jun; 29(6):2849-2861. PubMed ID: 37030774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An analysis of one potential form of health care fraud in Canada.
    Stelfox HT; Redelmeier DA
    CMAJ; 2003 Jul; 169(2):118-9. PubMed ID: 12874158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Medicare and state health care programs; fraud and abuse: OIG civil money penalties under the Medicare prescription drug discount card program. Interim final rule with comment period.
    Office of Inspector General (OIG), HHS
    Fed Regist; 2004 May; 69(97):28842-6. PubMed ID: 15151115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Health care fraud: a critical challenge.
    Leonardo JA
    Manag Care Q; 1996; 4(1):67-79. PubMed ID: 10154068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting data fabrication in clinical trials from cluster analysis perspective.
    Wu X; Carlsson M
    Pharm Stat; 2011; 10(3):257-64. PubMed ID: 20936626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active learning for solving the incomplete data problem in facial age classification by the furthest nearest-neighbor criterion.
    Wang JG; Sung E; Yau WY
    IEEE Trans Image Process; 2011 Jul; 20(7):2049-62. PubMed ID: 21245008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Fraud in the health systems of Chile: a detection model].
    Mesa FR; Raineri A; Maturana S; Kaempffer AM
    Rev Panam Salud Publica; 2009 Jan; 25(1):56-61. PubMed ID: 19341525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central statistical monitoring: detecting fraud in clinical trials.
    Pogue JM; Devereaux PJ; Thorlund K; Yusuf S
    Clin Trials; 2013 Apr; 10(2):225-35. PubMed ID: 23283577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using data mining to detect health care fraud and abuse: a review of literature.
    Joudaki H; Rashidian A; Minaei-Bidgoli B; Mahmoodi M; Geraili B; Nasiri M; Arab M
    Glob J Health Sci; 2014 Aug; 7(1):194-202. PubMed ID: 25560347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Healthcare insurance fraud detection using data mining.
    Hamid Z; Khalique F; Mahmood S; Daud A; Bukhari A; Alshemaimri B
    BMC Med Inform Decis Mak; 2024 Apr; 24(1):112. PubMed ID: 38671513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Employer strategies to combat health care plan fraud.
    Pflaum BB; Rivers JS
    Benefits Q; 1991; 7(1):6-14. PubMed ID: 10116952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.