BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22088958)

  • 1. Assessment of biotechnological strategies for the valorization of metal bearing wastes.
    Beolchini F; Fonti V; Dell'Anno A; Rocchetti L; Vegliò F
    Waste Manag; 2012 May; 32(5):949-56. PubMed ID: 22088958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal recovery from spent refinery catalysts by means of biotechnological strategies.
    Beolchini F; Fonti V; Ferella F; Vegliò F
    J Hazard Mater; 2010 Jun; 178(1-3):529-34. PubMed ID: 20167424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of ferric ion on bioleaching of heavy metals from contaminated sediment.
    Chen SY; Lin JG; Lee CY
    Water Sci Technol; 2003; 48(8):151-8. PubMed ID: 14682582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auto- and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals.
    Beolchini F; Dell'Anno A; De Propris L; Ubaldini S; Cerrone F; Danovaro R
    Chemosphere; 2009 Mar; 74(10):1321-6. PubMed ID: 19118863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of metal bioleaching from contaminated sediment using silver ion.
    Chen SY; Lin JG
    J Hazard Mater; 2009 Jan; 161(2-3):893-9. PubMed ID: 18514400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of different types of elemental sulfur on bioleaching of heavy metals from contaminated sediments.
    Seidel H; Wennrich R; Hoffmann P; Löser C
    Chemosphere; 2006 Mar; 62(9):1444-53. PubMed ID: 16054192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metals in coastal wetland sediments of the Pearl River Estuary, China.
    Li Q; Wu Z; Chu B; Zhang N; Cai S; Fang J
    Environ Pollut; 2007 Sep; 149(2):158-64. PubMed ID: 17321652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial distribution of heavy metals in sediments from the Gulf of Paria, Trinidad.
    Norville W
    Rev Biol Trop; 2005 May; 53 Suppl 1():33-40. PubMed ID: 17465142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an air-lift bioreactor: effects of sulfur concentration.
    Chen SY; Lin JG
    Water Res; 2004; 38(14-15):3205-14. PubMed ID: 15276736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid.
    Santhiya D; Ting YP
    J Biotechnol; 2005 Mar; 116(2):171-84. PubMed ID: 15664081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of sulphur concentration on bioleaching of heavy metals from contaminated dredged sediments.
    Fang D; Zhao L; Yang ZQ; Shan HX; Gao Y; Yang Q
    Environ Technol; 2009 Nov; 30(12):1241-8. PubMed ID: 19950466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal partitioning in river sediments measured by sequential extraction and biomimetic approaches.
    Peng SH; Wang WX; Li X; Yen YF
    Chemosphere; 2004 Nov; 57(8):839-51. PubMed ID: 15488575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remediation of heavy metal polluted sediment by suspension and solid-bed leaching: estimate of metal removal efficiency.
    Löser C; Zehnsdorf A; Hoffmann P; Seidel H
    Chemosphere; 2007 Jan; 66(9):1699-705. PubMed ID: 16908047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal removal from contaminated sludge for land application: a review.
    Babel S; del Mundo Dacera D
    Waste Manag; 2006; 26(9):988-1004. PubMed ID: 16298121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis.
    Jong T; Parry DL
    J Environ Monit; 2004 Apr; 6(4):278-85. PubMed ID: 15054535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractionation study in bioleached metallurgy wastes using six-step sequential extraction.
    Krasnodebska-Ostrega B; Pałdyna J; Kowalska J; Jedynak Ł; Golimowski J
    J Hazard Mater; 2009 Aug; 167(1-3):128-35. PubMed ID: 19171427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil.
    Salati S; Quadri G; Tambone F; Adani F
    Environ Pollut; 2010 May; 158(5):1899-906. PubMed ID: 19932537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: effects of substrate concentration.
    Liu YG; Zhou M; Zeng GM; Wang X; Li X; Fan T; Xu WH
    Bioresour Technol; 2008 Jul; 99(10):4124-9. PubMed ID: 17951054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum.
    Amiri F; Yaghmaei S; Mousavi SM
    Bioresour Technol; 2011 Jan; 102(2):1567-73. PubMed ID: 20863693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.