BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22088958)

  • 21. Bio-dissolution of Ni, V and Mo from spent petroleum catalyst using iron oxidizing bacteria.
    Pradhan D; Kim DJ; Roychaudhury G; Lee SW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(4):476-82. PubMed ID: 20390893
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heavy metal contamination of river Yamuna, Haryana, India: Assessment by Metal Enrichment Factor of the Sediments.
    Kaushik A; Kansal A; Santosh ; Meena ; Kumari S; Kaushik CP
    J Hazard Mater; 2009 May; 164(1):265-70. PubMed ID: 18809251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching.
    Liu YG; Zhou M; Zeng GM; Li X; Xu WH; Fan T
    J Hazard Mater; 2007 Mar; 141(1):202-8. PubMed ID: 16887262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of bacterial activities on the release of heavy metals from contaminated dredged sediments.
    Lors C; Tiffreau C; Laboudigue A
    Chemosphere; 2004 Aug; 56(6):619-30. PubMed ID: 15212904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
    Bayat B; Sari B
    J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heavy metal removal from wastewater and leachate co-treatment sludge by sulfur oxidizing bacteria.
    Aralp LC; Erdincler A; Onay TT
    Water Sci Technol; 2001; 44(10):53-8. PubMed ID: 11794681
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: a combined approach.
    Kierczak J; Neel C; Aleksander-Kwaterczak U; Helios-Rybicka E; Bril H; Puziewicz J
    Chemosphere; 2008 Oct; 73(5):776-84. PubMed ID: 18649917
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stabilization of heavy metals on spent fluid catalytic cracking catalyst using marine clay.
    Sun DD; Tay JH; Qian CE; Lai D
    Water Sci Technol; 2001; 44(10):285-91. PubMed ID: 11794668
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile.
    Ramirez M; Massolo S; Frache R; Correa JA
    Mar Pollut Bull; 2005 Jan; 50(1):62-72. PubMed ID: 15664034
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Matrix solid phase dispersion-assisted BCR sequential extraction method for metal partitioning in surface estuarine sediments.
    Martínez-Fernández M; Barciela-Alonso MC; Moreda-Piñeiro A; Bermejo-Barrera P
    Talanta; 2011 Jan; 83(3):840-9. PubMed ID: 21147327
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger.
    Aung KM; Ting YP
    J Biotechnol; 2005 Mar; 116(2):159-70. PubMed ID: 15664080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heavy metal content of potato chips and biscuits from Nagpur City, India.
    Gopalani M; Shahare M; Ramteke DS; Wate SR
    Bull Environ Contam Toxicol; 2007 Oct; 79(4):384-7. PubMed ID: 17713713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of biogeochemical interactions on metal bioleaching performance in contaminated marine sediment.
    Fonti V; Dell'Anno A; Beolchini F
    Water Res; 2013 Sep; 47(14):5139-52. PubMed ID: 23866143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area: pollution detection and affinity series.
    Pagnanelli F; Moscardini E; Giuliano V; Toro L
    Environ Pollut; 2004 Nov; 132(2):189-201. PubMed ID: 15312934
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of geochemical mobility of metals in surface sediments of the Santa Rosalia mining region, Western Gulf of California.
    Shumilin E; Gordeev V; Figueroa GR; Demina L; Choumiline K
    Arch Environ Contam Toxicol; 2011 Jan; 60(1):8-25. PubMed ID: 20480159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correlations of extractable heavy metals with organic matters in contaminated river sediments.
    Tsai LJ; Ho ST; Yu KC
    Water Sci Technol; 2003; 47(9):101-7. PubMed ID: 12830947
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of temperature on removal of heavy metals from contaminated river sediments via bioleaching.
    Tsai LJ; Yu KC; Chen SF; Kung PY
    Water Res; 2003 May; 37(10):2449-57. PubMed ID: 12727257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of metal speciation in combustion waste on the efficiency of Cu, Pb, Zn, Cd, Ni and Cr bioleaching in a mixed culture of sulfur-oxidizing and biosurfactant-producing bacteria.
    Karwowska E; Wojtkowska M; Andrzejewska D
    J Hazard Mater; 2015 Dec; 299():35-41. PubMed ID: 26073519
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of heavy metal pollutants accumulation in the Tisza river sediments.
    Sakan SM; Dordević DS; Manojlović DD; Predrag PS
    J Environ Manage; 2009 Aug; 90(11):3382-90. PubMed ID: 19515481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fate and effects of heavy metals in salt marsh sediments.
    Suntornvongsagul K; Burke DJ; Hamerlynck EP; Hahn D
    Environ Pollut; 2007 Sep; 149(1):79-91. PubMed ID: 17291650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.