These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22088958)

  • 61. Bioleaching of heavy metal-contaminated sediments by indigenous Thiobacillus spp: metal solubilization and sulfur oxidation in the presence of surfactants.
    Seidel H; Ondruschka J; Morgenstern P; Wennrich R; Hoffmann P
    Appl Microbiol Biotechnol; 2000 Dec; 54(6):854-7. PubMed ID: 11152081
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bioleaching of nickel from spent petroleum catalyst using Acidithiobacillus thiooxidans DSM- 11478.
    Sharma M; Bisht V; Singh B; Jain P; Mandal AK; Lal B; Sarma PM
    Indian J Exp Biol; 2015 Jun; 53(6):388-94. PubMed ID: 26155679
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cell surface engineering of microorganisms towards adsorption of heavy metals.
    Li PS; Tao HC
    Crit Rev Microbiol; 2015 Jun; 41(2):140-9. PubMed ID: 23915280
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Metal leaching from refinery waste hydroprocessing catalyst.
    Marafi M; Rana MS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(11):951-959. PubMed ID: 29775124
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Characterization of spent nickel-metal hydride batteries and a preliminary economic evaluation of the recovery processes.
    Lin SL; Huang KL; Wang IC; Chou IC; Kuo YM; Hung CH; Lin C
    J Air Waste Manag Assoc; 2016 Mar; 66(3):296-306. PubMed ID: 26651506
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Microbial detoxification of metals and radionuclides.
    Lloyd JR; Lovley DR
    Curr Opin Biotechnol; 2001 Jun; 12(3):248-53. PubMed ID: 11404102
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biotechnology in the management and resource recovery from metal bearing solid wastes: Recent advances.
    Sethurajan M; van Hullebusch ED; Nancharaiah YV
    J Environ Manage; 2018 Apr; 211():138-153. PubMed ID: 29408062
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Hazardous waste to materials: recovery of molybdenum and vanadium from acidic leach liquor of spent hydroprocessing catalyst using alamine 308.
    Sahu KK; Agrawal A; Mishra D
    J Environ Manage; 2013 Aug; 125():68-73. PubMed ID: 23644591
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Metal removal and morphological changes of B. megaterium in the presence of a spent catalyst.
    Rivas-Castillo AM; Guatemala-Cisneros ME; Gómez-Ramírez M; Rojas-Avelizapa NG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(6):533-540. PubMed ID: 30755080
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effective Recovery of Vanadium from Oil Refinery Waste into Vanadium-Based Metal-Organic Frameworks.
    Zhan G; Ng WC; Lin WY; Koh SN; Wang CH
    Environ Sci Technol; 2018 Mar; 52(5):3008-3015. PubMed ID: 29401380
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Microbial treatment of metal pollution--a working biotechnology?
    Gadd GM; White C
    Trends Biotechnol; 1993 Aug; 11(8):353-9. PubMed ID: 7764182
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bionanomining: biotechnological synthesis of metal nanoparticles from mining waste-opportunity for sustainable management of mining environmental liabilities.
    Wong-Pinto LS; Menzies A; Ordóñez JI
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):1859-1869. PubMed ID: 31925483
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fungal bioleaching of metals from refinery spent catalysts: A critical review of current research, challenges, and future directions.
    Pathak A; Kothari R; Vinoba M; Habibi N; Tyagi VV
    J Environ Manage; 2021 Feb; 280():111789. PubMed ID: 33370668
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Treatment of metal-contaminated wastes: why select a biological process?
    Eccles H
    Trends Biotechnol; 1999 Dec; 17(12):462-5. PubMed ID: 10557157
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biogeochemical cycling of metals impacting by microbial mobilization and immobilization.
    Jing R; Kjellerup BV
    J Environ Sci (China); 2018 Apr; 66():146-154. PubMed ID: 29628081
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Fungi Can Be More Effective than Bacteria for the Bioremediation of Marine Sediments Highly Contaminated with Heavy Metals.
    Dell'Anno F; Rastelli E; Buschi E; Barone G; Beolchini F; Dell'Anno A
    Microorganisms; 2022 May; 10(5):. PubMed ID: 35630436
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mechanochemical processing of molybdenum and vanadium sulfides for metal recovery from spent catalysts wastes.
    Li Z; Chen M; Zhang Q; Liu X; Saito F
    Waste Manag; 2017 Feb; 60():734-738. PubMed ID: 27422050
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Leaching of vanadium from waste V
    Wang S; Xie Y; Yan W; Wu X; Wang CT; Zhao F
    Sci Total Environ; 2018 Oct; 639():497-503. PubMed ID: 29800843
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution.
    Valls M; de Lorenzo V
    FEMS Microbiol Rev; 2002 Nov; 26(4):327-38. PubMed ID: 12413663
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Metal speciation in health and medicine represented by iron and vanadium.
    Crans DC; Woll KA; Prusinskas K; Johnson MD; Norkus E
    Inorg Chem; 2013 Nov; 52(21):12262-75. PubMed ID: 24041403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.