BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 22089025)

  • 1. Pore-expanded SBA-15 sulfonic acid silicas for biodiesel synthesis.
    Dacquin JP; Lee AF; Pirez C; Wilson K
    Chem Commun (Camb); 2012 Jan; 48(2):212-4. PubMed ID: 22089025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of Jatropha biodiesel fuel over sulfonic acid-based solid acids.
    Chen SY; Lao-Ubol S; Mochizuki T; Abe Y; Toba M; Yoshimura Y
    Bioresour Technol; 2014 Apr; 157():346-50. PubMed ID: 24548779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Etherification of biodiesel-derived glycerol with ethanol for fuel formulation over sulfonic modified catalysts.
    Melero JA; Vicente G; Paniagua M; Morales G; Muñoz P
    Bioresour Technol; 2012 Jan; 103(1):142-51. PubMed ID: 22018752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noncatalytic transformation of the crude lipid of ChlorellaI vulgaris into fatty acid methyl ester (FAME) with charcoal via a thermo-chemical process.
    Kwon EE; Jeon YJ; Yi H
    Bioresour Technol; 2013 Feb; 129():672-5. PubMed ID: 23294646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-grade oils and fats: effect of several impurities on biodiesel production over sulfonic acid heterogeneous catalysts.
    Morales G; Bautista LF; Melero JA; Iglesias J; Sánchez-Vázquez R
    Bioresour Technol; 2011 Oct; 102(20):9571-8. PubMed ID: 21862322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silica-bonded N-propyl sulfamic acid used as a heterogeneous catalyst for transesterification of soybean oil with methanol.
    Xie W; Yang D
    Bioresour Technol; 2011 Oct; 102(20):9818-22. PubMed ID: 21871795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient conversion of triacylglycerols and fatty acids to biodiesel in a microwave reactor using metal triflate catalysts.
    Socha AM; Sello JK
    Org Biomol Chem; 2010 Oct; 8(20):4753-6. PubMed ID: 20714659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast and simple method for determination of fatty acid methyl esters (FAME) in biodiesel blends using X-ray spectrometry.
    Sitko R; Zawisza B; Kowalewska Z; Kocot K; Polowniak M
    Talanta; 2011 Sep; 85(4):2000-6. PubMed ID: 21872051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous enzymatic synthesis of FAME and triacetyl glycerol from triglycerides and methyl acetate.
    Usai EM; Gualdi E; Solinas V; Battistel E
    Bioresour Technol; 2010 Oct; 101(20):7707-12. PubMed ID: 20542423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Macroporosity on Catalytic Upgrading of Fast Pyrolysis Bio-Oil by Esterification over Silica Sulfonic Acids.
    Manayil JC; Osatiashtiani A; Mendoza A; Parlett CMA; Isaacs MA; Durndell LJ; Michailof C; Heracleous E; Lappas A; Lee AF; Wilson K
    ChemSusChem; 2017 Sep; 10(17):3506-3511. PubMed ID: 28665029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syntheses of biodiesel precursors: sulfonic acid catalysts for condensation of biomass-derived platform molecules.
    Balakrishnan M; Sacia ER; Bell AT
    ChemSusChem; 2014 Apr; 7(4):1078-85. PubMed ID: 24596031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review.
    Lam MK; Lee KT; Mohamed AR
    Biotechnol Adv; 2010; 28(4):500-18. PubMed ID: 20362044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfonic acid functionalized silica: an efficient heterogeneous catalyst for a three-component synthesis of 1,4-dihydropyridines under solvent-free conditions.
    Das B; Suneel K; Venkateswarlu K; Ravikanth B
    Chem Pharm Bull (Tokyo); 2008 Mar; 56(3):366-8. PubMed ID: 18310950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of algae-based biodiesel using the continuous catalytic Mcgyan process.
    Krohn BJ; McNeff CV; Yan B; Nowlan D
    Bioresour Technol; 2011 Jan; 102(1):94-100. PubMed ID: 20561783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of fatty acid methyl ester from crude jatropha (Jatropha curcas Linnaeus) oil using aluminium oxide modified Mg-Zn heterogeneous catalyst.
    Olutoye MA; Hameed BH
    Bioresour Technol; 2011 Jun; 102(11):6392-8. PubMed ID: 21486692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and solid-state NMR characterization of cubic mesoporous silica SBA-1 functionalized with sulfonic acid groups.
    Tsai HH; Chiu PJ; Jheng GL; Ting CC; Pan YC; Kao HM
    J Colloid Interface Sci; 2011 Jul; 359(1):86-94. PubMed ID: 21507414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Transformation of Triglycerides to Biodiesel with SiO
    Barbosa SL; Rocha ACP; Nelson DL; de Freitas MS; Mestre AAPF; Klein SI; Clososki GC; Caires FJ; Flumignan DL; Dos Santos LK; Wentz AP; Pasa VMD; Rios RDF
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodiesel synthesis at high pressure and temperature: analysis of energy consumption on industrial scale.
    Glisić S; Lukic I; Skala D
    Bioresour Technol; 2009 Dec; 100(24):6347-54. PubMed ID: 19660938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of the organic-inorganic hybrid membrane for biodiesel production.
    Shi W; He B; Ding J; Li J; Yan F; Liang X
    Bioresour Technol; 2010 Mar; 101(5):1501-5. PubMed ID: 19656676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlamydomonas as a "new" organism for biodiesel production.
    Morowvat MH; Rasoul-Amini S; Ghasemi Y
    Bioresour Technol; 2010 Mar; 101(6):2059-62. PubMed ID: 19945866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.