BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22089196)

  • 1. The decline of autophagy contributes to proximal tubular dysfunction during sepsis.
    Hsiao HW; Tsai KL; Wang LF; Chen YH; Chiang PC; Chuang SM; Hsu C
    Shock; 2012 Mar; 37(3):289-96. PubMed ID: 22089196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure and stretch differentially affect proliferation of renal proximal tubular cells.
    Felsen D; Diaz BJ; Chen J; Gonzalez J; Kristensen MLV; Bohn AB; Roth BT; Poppas DP; Nørregaard R
    Physiol Rep; 2017 Sep; 5(17):. PubMed ID: 28904080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valproate attenuates the proteinuria, podocyte and renal injury by facilitating autophagy and inactivation of NF-κB/iNOS signaling in diabetic rat.
    Khan S; Jena G; Tikoo K; Kumar V
    Biochimie; 2015 Mar; 110():1-16. PubMed ID: 25572918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury.
    Liu S; Hartleben B; Kretz O; Wiech T; Igarashi P; Mizushima N; Walz G; Huber TB
    Autophagy; 2012 May; 8(5):826-37. PubMed ID: 22617445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autophagy in acute kidney injury.
    Kaushal GP; Shah SV
    Kidney Int; 2016 Apr; 89(4):779-91. PubMed ID: 26924060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SIRT3 Protects Against Acute Kidney Injury via AMPK/mTOR-Regulated Autophagy.
    Zhao W; Zhang L; Chen R; Lu H; Sui M; Zhu Y; Zeng L
    Front Physiol; 2018; 9():1526. PubMed ID: 30487750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury.
    Gomez H; Ince C; De Backer D; Pickkers P; Payen D; Hotchkiss J; Kellum JA
    Shock; 2014 Jan; 41(1):3-11. PubMed ID: 24346647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury.
    Ishihara M; Urushido M; Hamada K; Matsumoto T; Shimamura Y; Ogata K; Inoue K; Taniguchi Y; Horino T; Fujieda M; Fujimoto S; Terada Y
    Am J Physiol Renal Physiol; 2013 Aug; 305(4):F495-509. PubMed ID: 23698117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury.
    Hall AM; Rhodes GJ; Sandoval RM; Corridon PR; Molitoris BA
    Kidney Int; 2013 Jan; 83(1):72-83. PubMed ID: 22992467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Molecular Mechanism and Therapeutic Application of Autophagy for Urological Disease.
    Chueh KS; Lu JH; Juan TJ; Chuang SM; Juan YS
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Autophagy-Associated MITF-GAS5-miR-23 Loop Attenuates Vascular Oxidative and Inflammatory Damage in Sepsis.
    Cheng J; Ding C; Tang H; Zhou H; Wu M; Chen Y
    Biomedicines; 2023 Jun; 11(7):. PubMed ID: 37509452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic dysregulation of autophagy in sepsis-induced acute kidney injury: the underlying mechanisms for renoprotection.
    Zhao S; Liao J; Shen M; Li X; Wu M
    Front Immunol; 2023; 14():1180866. PubMed ID: 37215112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miR-926-3p influences myocardial injury in septic mice through regulation of mTOR signaling pathway by targeting TSC1.
    Yan F; Wang Q; Yang H; Lv H; Qin W
    Aging (Albany NY); 2023 May; 15(9):3826-3838. PubMed ID: 37171398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autophagy and mitophagy: physiological implications in kidney inflammation and diseases.
    Bhatia D; Choi ME
    Am J Physiol Renal Physiol; 2023 Jul; 325(1):F1-F21. PubMed ID: 37167272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sepsis-induced AKI: From pathogenesis to therapeutic approaches.
    He FF; Wang YM; Chen YY; Huang W; Li ZQ; Zhang C
    Front Pharmacol; 2022; 13():981578. PubMed ID: 36188562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective effect of ghrelin on intestinal I/R injury in rats.
    Jiang M; Wan S; Dai X; Ye Y; Hua W; Ma G; Pang X; Wang H; Shi B
    Open Med (Wars); 2022; 17(1):1308-1317. PubMed ID: 35937002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondria ROS and mitophagy in acute kidney injury.
    Su L; Zhang J; Gomez H; Kellum JA; Peng Z
    Autophagy; 2023 Feb; 19(2):401-414. PubMed ID: 35678504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmed Cell Death in Sepsis Associated Acute Kidney Injury.
    Wu Z; Deng J; Zhou H; Tan W; Lin L; Yang J
    Front Med (Lausanne); 2022; 9():883028. PubMed ID: 35655858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trichostatin A improves the inflammatory response and liver injury in septic mice through the FoxO3a/autophagy signaling pathway.
    Shen MJ; Sun LC; Liu XY; Xiong MC; Li S; Tang AL; Zhang GQ
    World J Emerg Med; 2022; 13(3):182-188. PubMed ID: 35646203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of Kidney-Immune System Crosstalk in Sepsis with Acute Kidney Injury: Lessons Learned from Animal Models and Their Application to Human Health.
    LaFavers K
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.