BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 22089239)

  • 1. Agonist-induced PKC phosphorylation regulates GluK2 SUMOylation and kainate receptor endocytosis.
    Konopacki FA; Jaafari N; Rocca DL; Wilkinson KA; Chamberlain S; Rubin P; Kantamneni S; Mellor JR; Henley JM
    Proc Natl Acad Sci U S A; 2011 Dec; 108(49):19772-7. PubMed ID: 22089239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated interplay between palmitoylation, phosphorylation and SUMOylation regulates kainate receptor surface expression.
    Yucel BP; Al Momany EM; Evans AJ; Seager R; Wilkinson KA; Henley JM
    Front Mol Neurosci; 2023; 16():1270849. PubMed ID: 37868810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PKC SUMOylation inhibits the binding of 14-3-3τ to GluK2.
    Li X; Wang Y; Zhu A; Zhou J; Li Y
    Channels (Austin); 2017 Nov; 11(6):616-623. PubMed ID: 28837400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SUMOylation and phosphorylation of GluK2 regulate kainate receptor trafficking and synaptic plasticity.
    Chamberlain SE; González-González IM; Wilkinson KA; Konopacki FA; Kantamneni S; Henley JM; Mellor JR
    Nat Neurosci; 2012 Jun; 15(6):845-52. PubMed ID: 22522402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SUMOylation of the kainate receptor subunit GluK2 contributes to the activation of the MLK3-JNK3 pathway following kainate stimulation.
    Zhu QJ; Xu Y; Du CP; Hou XY
    FEBS Lett; 2012 May; 586(9):1259-64. PubMed ID: 22483987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification and movement: Phosphorylation and SUMOylation regulate endocytosis of GluK2-containing kainate receptors.
    Wilkinson KA; Konopacki F; Henley JM
    Commun Integr Biol; 2012 Mar; 5(2):223-6. PubMed ID: 22808340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SUMOylation regulates kainate-receptor-mediated synaptic transmission.
    Martin S; Nishimune A; Mellor JR; Henley JM
    Nature; 2007 May; 447(7142):321-5. PubMed ID: 17486098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kainate receptor post-translational modifications differentially regulate association with 4.1N to control activity-dependent receptor endocytosis.
    Copits BA; Swanson GT
    J Biol Chem; 2013 Mar; 288(13):8952-65. PubMed ID: 23400781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of the kainate receptor (KAR) auxiliary subunit Neto2 at serine 409 regulates synaptic targeting of the KAR subunit GluK1.
    Lomash RM; Sheng N; Li Y; Nicoll RA; Roche KW
    J Biol Chem; 2017 Sep; 292(37):15369-15377. PubMed ID: 28717010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation.
    Sun H; Lu L; Zuo Y; Wang Y; Jiao Y; Zeng WZ; Huang C; Zhu MX; Zamponi GW; Zhou T; Xu TL; Cheng J; Li Y
    Nat Commun; 2014 Sep; 5():4980. PubMed ID: 25236484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential regulation of kainate receptor trafficking by phosphorylation of distinct sites on GluR6.
    Nasu-Nishimura Y; Jaffe H; Isaac JT; Roche KW
    J Biol Chem; 2010 Jan; 285(4):2847-56. PubMed ID: 19920140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tyrosine phosphorylation of GluK2 up-regulates kainate receptor-mediated responses and downstream signaling after brain ischemia.
    Zhu QJ; Kong FS; Xu H; Wang Y; Du CP; Sun CC; Liu Y; Li T; Hou XY
    Proc Natl Acad Sci U S A; 2014 Sep; 111(38):13990-5. PubMed ID: 25201974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly and Trafficking of Homomeric and Heteromeric Kainate Receptors with Impaired Ligand Binding Sites.
    Scholefield CL; Atlason PT; Jane DE; Molnár E
    Neurochem Res; 2019 Mar; 44(3):585-599. PubMed ID: 30302614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological effects of kainic acid on vasopressin-enhanced green fluorescent protein and oxytocin-monomeric red fluorescent protein 1 neurones isolated from the supraoptic nucleus in transgenic rats.
    Ohkubo J; Ohbuchi T; Yoshimura M; Maruyama T; Ishikura T; Matsuura T; Suzuki H; Ueta Y
    J Neuroendocrinol; 2014 Jan; 26(1):43-51. PubMed ID: 24341559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of group I metabotropic glutamate receptors potentiates heteromeric kainate receptors.
    Rojas A; Wetherington J; Shaw R; Serrano G; Swanger S; Dingledine R
    Mol Pharmacol; 2013 Jan; 83(1):106-21. PubMed ID: 23066089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GluK2-mediated excitability within the superficial layers of the entorhinal cortex.
    Beed PS; Salmen B; Schmitz D
    PLoS One; 2009; 4(5):e5576. PubMed ID: 19440371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parkin regulates kainate receptors by interacting with the GluK2 subunit.
    Maraschi A; Ciammola A; Folci A; Sassone F; Ronzitti G; Cappelletti G; Silani V; Sato S; Hattori N; Mazzanti M; Chieregatti E; Mulle C; Passafaro M; Sassone J
    Nat Commun; 2014 Oct; 5():5182. PubMed ID: 25316086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neto proteins regulate gating of the kainate-type glutamate receptor GluK2 through two binding sites.
    Li YJ; Duan GF; Sun JH; Wu D; Ye C; Zang YY; Chen GQ; Shi YY; Wang J; Zhang W; Shi YS
    J Biol Chem; 2019 Nov; 294(47):17889-17902. PubMed ID: 31628192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ADAR2-mediated Q/R editing of GluK2 regulates kainate receptor upscaling in response to suppression of synaptic activity.
    Gurung S; Evans AJ; Wilkinson KA; Henley JM
    J Cell Sci; 2018 Dec; 131(24):. PubMed ID: 30559217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced synaptic function of Kainate receptors in the insular cortex of Fmr1 Knock-out mice.
    Qiu S; Wu Y; Lv X; Li X; Zhuo M; Koga K
    Mol Brain; 2018 Sep; 11(1):54. PubMed ID: 30241548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.