BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

740 related articles for article (PubMed ID: 22089420)

  • 1. Choline metabolism in malignant transformation.
    Glunde K; Bhujwalla ZM; Ronen SM
    Nat Rev Cancer; 2011 Nov; 11(12):835-48. PubMed ID: 22089420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Choline metabolism in cancer: implications for diagnosis and therapy.
    Glunde K; Jacobs MA; Bhujwalla ZM
    Expert Rev Mol Diagn; 2006 Nov; 6(6):821-9. PubMed ID: 17140369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Choline metabolism-based molecular diagnosis of cancer: an update.
    Glunde K; Penet MF; Jiang L; Jacobs MA; Bhujwalla ZM
    Expert Rev Mol Diagn; 2015 Jun; 15(6):735-47. PubMed ID: 25921026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular causes of the aberrant choline phospholipid metabolism in breast cancer.
    Glunde K; Jie C; Bhujwalla ZM
    Cancer Res; 2004 Jun; 64(12):4270-6. PubMed ID: 15205341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic targets and biomarkers identified in cancer choline phospholipid metabolism.
    Glunde K; Serkova NJ
    Pharmacogenomics; 2006 Oct; 7(7):1109-23. PubMed ID: 17054420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of breast cancers and therapy response by MRS and quantitative gene expression profiling in the choline pathway.
    Morse DL; Carroll D; Day S; Gray H; Sadarangani P; Murthi S; Job C; Baggett B; Raghunand N; Gillies RJ
    NMR Biomed; 2009 Jan; 22(1):114-27. PubMed ID: 19016452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 17-allyamino-17-demethoxygeldanamycin treatment results in a magnetic resonance spectroscopy-detectable elevation in choline-containing metabolites associated with increased expression of choline transporter SLC44A1 and phospholipase A2.
    Brandes AH; Ward CS; Ronen SM
    Breast Cancer Res; 2010; 12(5):R84. PubMed ID: 20946630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MRS and MRSI guidance in molecular medicine: targeting and monitoring of choline and glucose metabolism in cancer.
    Glunde K; Jiang L; Moestue SA; Gribbestad IS
    NMR Biomed; 2011 Jul; 24(6):673-90. PubMed ID: 21793073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Choline phospholipid metabolism in cancer: consequences for molecular pharmaceutical interventions.
    Glunde K; Ackerstaff E; Mori N; Jacobs MA; Bhujwalla ZM
    Mol Pharm; 2006; 3(5):496-506. PubMed ID: 17009848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting Phospholipid Metabolism in Cancer.
    Cheng M; Bhujwalla ZM; Glunde K
    Front Oncol; 2016; 6():266. PubMed ID: 28083512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations of choline phospholipid metabolism in endometrial cancer are caused by choline kinase alpha overexpression and a hyperactivated deacylation pathway.
    Trousil S; Lee P; Pinato DJ; Ellis JK; Dina R; Aboagye EO; Keun HC; Sharma R
    Cancer Res; 2014 Dec; 74(23):6867-77. PubMed ID: 25267063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel roadmap connecting the
    Iorio E; Podo F; Leach MO; Koutcher J; Blankenberg FG; Norfray JF
    Eur Radiol Exp; 2021 Jan; 5(1):5. PubMed ID: 33447887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells.
    Aboagye EO; Bhujwalla ZM
    Cancer Res; 1999 Jan; 59(1):80-4. PubMed ID: 9892190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phosphoinositide 3-kinase inhibitor PI-103 downregulates choline kinase alpha leading to phosphocholine and total choline decrease detected by magnetic resonance spectroscopy.
    Al-Saffar NM; Jackson LE; Raynaud FI; Clarke PA; Ramírez de Molina A; Lacal JC; Workman P; Leach MO
    Cancer Res; 2010 Jul; 70(13):5507-17. PubMed ID: 20551061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells.
    Ackerstaff E; Pflug BR; Nelson JB; Bhujwalla ZM
    Cancer Res; 2001 May; 61(9):3599-603. PubMed ID: 11325827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focus on the glycerophosphocholine pathway in choline phospholipid metabolism of cancer.
    Sonkar K; Ayyappan V; Tressler CM; Adelaja O; Cai R; Cheng M; Glunde K
    NMR Biomed; 2019 Oct; 32(10):e4112. PubMed ID: 31184789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic assessment of the action of targeted cancer therapeutics using magnetic resonance spectroscopy.
    Beloueche-Babari M; Chung YL; Al-Saffar NM; Falck-Miniotis M; Leach MO
    Br J Cancer; 2010 Jan; 102(1):1-7. PubMed ID: 19935796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting tumor metabolism for non-invasive imaging of the therapeutic activity of molecularly targeted anticancer agents.
    Beloueche-Babari M; Workman P; Leach MO
    Cell Cycle; 2011 Sep; 10(17):2883-93. PubMed ID: 21857160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phospholipase D1 and choline kinase-α are interactive targets in breast cancer.
    Gadiya M; Mori N; Cao MD; Mironchik Y; Kakkad S; Gribbestad IS; Glunde K; Krishnamachary B; Bhujwalla ZM
    Cancer Biol Ther; 2014 May; 15(5):593-601. PubMed ID: 24556997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.