These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 22089884)
1. Expression of the bacterial heavy metal transporter MerC fused with a plant SNARE, SYP121, in Arabidopsis thaliana increases cadmium accumulation and tolerance. Kiyono M; Oka Y; Sone Y; Tanaka M; Nakamura R; Sato MH; Pan-Hou H; Sakabe K; Inoue K Planta; 2012 Apr; 235(4):841-50. PubMed ID: 22089884 [TBL] [Abstract][Full Text] [Related]
2. SCARECROW promoter-driven expression of a bacterial mercury transporter MerC in root endodermal cells enhances mercury accumulation in Arabidopsis shoots. Uraguchi S; Sone Y; Yoshikawa A; Tanabe M; Sato H; Otsuka Y; Nakamura R; Takanezawa Y; Kiyono M Planta; 2019 Aug; 250(2):667-674. PubMed ID: 31104129 [TBL] [Abstract][Full Text] [Related]
4. Mesophyll specific expression of a bacterial mercury transporter-based vacuolar sequestration machinery sufficiently enhances mercury tolerance of Arabidopsis. Uraguchi S; Ohshiro Y; Okuda M; Kawakami S; Yoneyama N; Tsuchiya Y; Nakamura R; Takanezawa Y; Kiyono M Front Plant Sci; 2022; 13():986600. PubMed ID: 36035696 [TBL] [Abstract][Full Text] [Related]
5. Ectopic expression of a bacterial mercury transporter MerC in root epidermis for efficient mercury accumulation in shoots of Arabidopsis plants. Uraguchi S; Sone Y; Kamezawa M; Tanabe M; Hirakawa M; Nakamura R; Takanezawa Y; Kiyono M Sci Rep; 2019 Mar; 9(1):4347. PubMed ID: 30867467 [TBL] [Abstract][Full Text] [Related]
6. A Novel Role of MerC in Methylmercury Transport and Phytoremediation of Methylmercury Contamination. Sone Y; Uraguchi S; Takanezawa Y; Nakamura R; Pan-Hou H; Kiyono M Biol Pharm Bull; 2017; 40(7):1125-1128. PubMed ID: 28674257 [TBL] [Abstract][Full Text] [Related]
7. Engineering expression of the heavy metal transporter MerC in Saccharomyces cerevisiae for increased cadmium accumulation. Kiyono M; Miyahara K; Sone Y; Pan-Hou H; Uraguchi S; Nakamura R; Sakabe K Appl Microbiol Biotechnol; 2010 Mar; 86(2):753-9. PubMed ID: 20033400 [TBL] [Abstract][Full Text] [Related]
8. Interactomics of Qa-SNARE in Arabidopsis thaliana. Fujiwara M; Uemura T; Ebine K; Nishimori Y; Ueda T; Nakano A; Sato MH; Fukao Y Plant Cell Physiol; 2014 Apr; 55(4):781-9. PubMed ID: 24556609 [TBL] [Abstract][Full Text] [Related]
9. A tripartite SNARE-K+ channel complex mediates in channel-dependent K+ nutrition in Arabidopsis. Honsbein A; Sokolovski S; Grefen C; Campanoni P; Pratelli R; Paneque M; Chen Z; Johansson I; Blatt MR Plant Cell; 2009 Sep; 21(9):2859-77. PubMed ID: 19794113 [TBL] [Abstract][Full Text] [Related]
10. A bicistronic, Ubiquitin-10 promoter-based vector cassette for transient transformation and functional analysis of membrane transport demonstrates the utility of quantitative voltage clamp studies on intact Arabidopsis root epidermis. Chen Z; Grefen C; Donald N; Hills A; Blatt MR Plant Cell Environ; 2011 Apr; 34(4):554-64. PubMed ID: 21251017 [TBL] [Abstract][Full Text] [Related]
11. Arabidopsis Sec1/Munc18 protein SEC11 is a competitive and dynamic modulator of SNARE binding and SYP121-dependent vesicle traffic. Karnik R; Grefen C; Bayne R; Honsbein A; Köhler T; Kioumourtzoglou D; Williams M; Bryant NJ; Blatt MR Plant Cell; 2013 Apr; 25(4):1368-82. PubMed ID: 23572542 [TBL] [Abstract][Full Text] [Related]
12. Arabidopsis SNAREs SYP61 and SYP121 coordinate the trafficking of plasma membrane aquaporin PIP2;7 to modulate the cell membrane water permeability. Hachez C; Laloux T; Reinhardt H; Cavez D; Degand H; Grefen C; De Rycke R; Inzé D; Blatt MR; Russinova E; Chaumont F Plant Cell; 2014 Jul; 26(7):3132-47. PubMed ID: 25082856 [TBL] [Abstract][Full Text] [Related]
13. Dual Sites for SEC11 on the SNARE SYP121 Implicate a Binding Exchange during Secretory Traffic. Zhang B; Karnik R; Alvim J; Donald N; Blatt MR Plant Physiol; 2019 May; 180(1):228-239. PubMed ID: 30850468 [TBL] [Abstract][Full Text] [Related]
14. LKS4-mediated SYP121 phosphorylation participates in light-induced stomatal opening in Arabidopsis. Ding X; Wang S; Cui X; Zhong H; Zou H; Zhao P; Guo Z; Chen H; Li C; Zhu L; Li J; Fu Y Curr Biol; 2024 Jul; 34(14):3102-3115.e6. PubMed ID: 38944035 [TBL] [Abstract][Full Text] [Related]
15. Qualitative difference between "bulb" membranes and other vacuolar membranes. Saito C; Uemura T; Awai C; Ueda T; Abe H; Nakano A Plant Signal Behav; 2011 Dec; 6(12):1914-7. PubMed ID: 22105033 [TBL] [Abstract][Full Text] [Related]
16. Binding of SEC11 indicates its role in SNARE recycling after vesicle fusion and identifies two pathways for vesicular traffic to the plasma membrane. Karnik R; Zhang B; Waghmare S; Aderhold C; Grefen C; Blatt MR Plant Cell; 2015 Mar; 27(3):675-94. PubMed ID: 25747882 [TBL] [Abstract][Full Text] [Related]
17. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Kim DY; Bovet L; Maeshima M; Martinoia E; Lee Y Plant J; 2007 Apr; 50(2):207-18. PubMed ID: 17355438 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms of functional specificity among plasma-membrane syntaxins in Arabidopsis. Reichardt I; Slane D; El Kasmi F; Knöll C; Fuchs R; Mayer U; Lipka V; Jürgens G Traffic; 2011 Sep; 12(9):1269-80. PubMed ID: 21707889 [TBL] [Abstract][Full Text] [Related]
19. Differential expression control and polarized distribution of plasma membrane-resident SYP1 SNAREs in Arabidopsis thaliana. Enami K; Ichikawa M; Uemura T; Kutsuna N; Hasezawa S; Nakagawa T; Nakano A; Sato MH Plant Cell Physiol; 2009 Feb; 50(2):280-9. PubMed ID: 19098073 [TBL] [Abstract][Full Text] [Related]
20. SNAREs SYP121 and SYP122 Mediate the Secretion of Distinct Cargo Subsets. Waghmare S; Lileikyte E; Karnik R; Goodman JK; Blatt MR; Jones AME Plant Physiol; 2018 Dec; 178(4):1679-1688. PubMed ID: 30348815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]