These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 22090037)

  • 21. Diagnosis of diabetic retinopathy: automatic extraction of optic disc and exudates from retinal images using marker-controlled watershed transformation.
    Reza AW; Eswaran C; Dimyati K
    J Med Syst; 2011 Dec; 35(6):1491-501. PubMed ID: 20703768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images.
    Liu Q; Zou B; Chen J; Ke W; Yue K; Chen Z; Zhao G
    Comput Med Imaging Graph; 2017 Jan; 55():78-86. PubMed ID: 27665058
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A contribution of image processing to the diagnosis of diabetic retinopathy--detection of exudates in color fundus images of the human retina.
    Walter T; Klein JC; Massin P; Erginay A
    IEEE Trans Med Imaging; 2002 Oct; 21(10):1236-43. PubMed ID: 12585705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis.
    Sánchez CI; Hornero R; López MI; Aboy M; Poza J; Abásolo D
    Med Eng Phys; 2008 Apr; 30(3):350-7. PubMed ID: 17556004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Early detection of diabetes retinopathy by new algorithms for automatic recognition of vascular changes.
    Englmeier KH; Schmid K; Hildebrand C; Bichler S; Porta M; Maurino M; Bek T
    Eur J Med Res; 2004 Oct; 9(10):473-8. PubMed ID: 15546814
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid fuzzy image processing for situation assessment.
    Zahlmann G; Kochner B; Ugi I; Schuhmann D; Liesenfeld B; Wegner A; Obermaier M; Mertz M
    IEEE Eng Med Biol Mag; 2000; 19(1):76-83. PubMed ID: 10659432
    [No Abstract]   [Full Text] [Related]  

  • 27. Automatic detection of microaneurysms in retinal fundus images.
    Wu B; Zhu W; Shi F; Zhu S; Chen X
    Comput Med Imaging Graph; 2017 Jan; 55():106-112. PubMed ID: 27595214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decision support system for the detection and grading of hard exudates from color fundus photographs.
    Jaafar HF; Nandi AK; Al-Nuaimy W
    J Biomed Opt; 2011 Nov; 16(11):116001. PubMed ID: 22112106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy.
    S K S; P A
    J Med Syst; 2017 Nov; 41(12):201. PubMed ID: 29124453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automatic Detection of Retinal Lesions for Screening of Diabetic Retinopathy.
    Kar SS; Maity SP
    IEEE Trans Biomed Eng; 2018 Mar; 65(3):608-618. PubMed ID: 28541892
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of neovascularization in diabetic retinopathy.
    Hassan SS; Bong DB; Premsenthil M
    J Digit Imaging; 2012 Jun; 25(3):437-44. PubMed ID: 21901535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review on exudates detection methods for diabetic retinopathy.
    Joshi S; Karule PT
    Biomed Pharmacother; 2018 Jan; 97():1454-1460. PubMed ID: 29156536
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An ensemble classification of exudates in color fundus images using an evolutionary algorithm based optimal features selection.
    Ullah H; Saba T; Islam N; Abbas N; Rehman A; Mehmood Z; Anjum A
    Microsc Res Tech; 2019 Apr; 82(4):361-372. PubMed ID: 30677193
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Weakly Supervised Sensitive Heatmap framework to classify and localize diabetic retinopathy lesions.
    Al-Mukhtar M; Morad AH; Albadri M; Islam MDS
    Sci Rep; 2021 Dec; 11(1):23631. PubMed ID: 34880311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Segmentation of retinal blood vessels by a novel hybrid technique- Principal Component Analysis (PCA) and Contrast Limited Adaptive Histogram Equalization (CLAHE).
    Sidhu RK; Sachdeva J; Katoch D
    Microvasc Res; 2023 Jul; 148():104477. PubMed ID: 36746364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of haemorrhage and exudate detection in automated grading of diabetic retinopathy.
    Fleming AD; Goatman KA; Philip S; Williams GJ; Prescott GJ; Scotland GS; McNamee P; Leese GP; Wykes WN; Sharp PF; Olson JA;
    Br J Ophthalmol; 2010 Jun; 94(6):706-11. PubMed ID: 19661069
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simple hybrid method for fine microaneurysm detection from non-dilated diabetic retinopathy retinal images.
    Sopharak A; Uyyanonvara B; Barman S
    Comput Med Imaging Graph; 2013; 37(5-6):394-402. PubMed ID: 23777979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microaneurysm detection with radon transform-based classification on retina images.
    Giancardo L; Meriaudeau F; Karnowski TP; Li Y; Tobin KW; Chaum E
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5939-42. PubMed ID: 22255692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-proliferative diabetic retinopathy symptoms detection and classification using neural network.
    Al-Jarrah MA; Shatnawi H
    J Med Eng Technol; 2017 Aug; 41(6):498-505. PubMed ID: 28786703
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images.
    Osareh A; Shadgar B; Markham R
    IEEE Trans Inf Technol Biomed; 2009 Jul; 13(4):535-45. PubMed ID: 19586814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.