These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 22090037)

  • 41. Exudate identification in retinal fundus images using precise textural verifications.
    Monemian M; Rabbani H
    Sci Rep; 2023 Feb; 13(1):2824. PubMed ID: 36808177
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A review on computer-aided recent developments for automatic detection of diabetic retinopathy.
    Randive SN; Senapati RK; Rahulkar AD
    J Med Eng Technol; 2019 Feb; 43(2):87-99. PubMed ID: 31198073
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optic nerve head segmentation.
    Lowell J; Hunter A; Steel D; Basu A; Ryder R; Fletcher E; Kennedy L
    IEEE Trans Med Imaging; 2004 Feb; 23(2):256-64. PubMed ID: 14964569
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detection of neovascularization in retinal images using multivariate m-Mediods based classifier.
    Usman Akram M; Khalid S; Tariq A; Younus Javed M
    Comput Med Imaging Graph; 2013; 37(5-6):346-57. PubMed ID: 23916066
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Automatic tracing of optic disc and exudates from color fundus images using fixed and variable thresholds.
    Reza AW; Eswaran C; Hati S
    J Med Syst; 2009 Feb; 33(1):73-80. PubMed ID: 19238899
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A method to assist in the diagnosis of early diabetic retinopathy: Image processing applied to detection of microaneurysms in fundus images.
    Rosas-Romero R; Martínez-Carballido J; Hernández-Capistrán J; Uribe-Valencia LJ
    Comput Med Imaging Graph; 2015 Sep; 44():41-53. PubMed ID: 26245720
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiscale AM-FM methods for diabetic retinopathy lesion detection.
    Agurto C; Murray V; Barriga E; Murillo S; Pattichis M; Davis H; Russell S; Abramoff M; Soliz P
    IEEE Trans Med Imaging; 2010 Feb; 29(2):502-12. PubMed ID: 20129850
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Micro-segmentation of retinal image lesions in diabetic retinopathy using energy-based fuzzy C-Means clustering (EFM-FCM).
    Naz H; Nijhawan R; Ahuja NJ; Saba T; Alamri FS; Rehman A
    Microsc Res Tech; 2024 Jan; 87(1):78-94. PubMed ID: 37681440
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Algorithms for Diagnosis of Diabetic Retinopathy and Diabetic Macula Edema- A Review.
    Suriyasekeran K; Santhanamahalingam S; Duraisamy M
    Adv Exp Med Biol; 2021; 1307():357-373. PubMed ID: 32166636
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Automated detection of exudates for diabetic retinopathy screening.
    Fleming AD; Philip S; Goatman KA; Williams GJ; Olson JA; Sharp PF
    Phys Med Biol; 2007 Dec; 52(24):7385-96. PubMed ID: 18065845
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Automatic Grading System for Diabetic Retinopathy Diagnosis Using Deep Learning Artificial Intelligence Software.
    Wang XN; Dai L; Li ST; Kong HY; Sheng B; Wu Q
    Curr Eye Res; 2020 Dec; 45(12):1550-1555. PubMed ID: 32410471
    [No Abstract]   [Full Text] [Related]  

  • 52. Analysis on diagnosing diabetic retinopathy by segmenting blood vessels, optic disc and retinal abnormalities.
    Jadhav AS; Patil PB; Biradar S
    J Med Eng Technol; 2020 Aug; 44(6):299-316. PubMed ID: 32729345
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Automated detection and grading of diabetic maculopathy in digital retinal images.
    Tariq A; Akram MU; Shaukat A; Khan SA
    J Digit Imaging; 2013 Aug; 26(4):803-12. PubMed ID: 23325123
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Retinal image assessment using bi-level adaptive morphological component analysis.
    Javidi M; Harati A; Pourreza H
    Artif Intell Med; 2019 Aug; 99():101702. PubMed ID: 31606110
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System.
    Jaya T; Dheeba J; Singh NA
    J Digit Imaging; 2015 Dec; 28(6):761-8. PubMed ID: 25822397
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optic disc detection and boundary extraction in retinal images.
    Basit A; Fraz MM
    Appl Opt; 2015 Apr; 54(11):3440-7. PubMed ID: 25967336
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Feature extraction and selection for the automatic detection of hard exudates in retinal images.
    Garcia M; Hornero R; Sánchez CI; López MI; Diez A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4969-72. PubMed ID: 18003122
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Segmentation of candidate dark lesions in fundus images based on local thresholding and pixel density.
    Grisan E; Ruggeri A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6736-9. PubMed ID: 18003573
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Automated System for Referral of Cotton-Wool Spots.
    Naqvi SAG; Zafar HMF; Ul Haq I
    Curr Diabetes Rev; 2018; 14(2):168-174. PubMed ID: 27908249
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exudate-based diabetic macular edema detection in fundus images using publicly available datasets.
    Giancardo L; Meriaudeau F; Karnowski TP; Li Y; Garg S; Tobin KW; Chaum E
    Med Image Anal; 2012 Jan; 16(1):216-26. PubMed ID: 21865074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.