BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22090285)

  • 1. Effects of surface microtopography on the assembly of the osteoclast resorption apparatus.
    Geblinger D; Zink C; Spencer ND; Addadi L; Geiger B
    J R Soc Interface; 2012 Jul; 9(72):1599-608. PubMed ID: 22090285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Podosome organization drives osteoclast-mediated bone resorption.
    Georgess D; Machuca-Gayet I; Blangy A; Jurdic P
    Cell Adh Migr; 2014; 8(3):191-204. PubMed ID: 24714644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Podosome and sealing zone: specificity of the osteoclast model.
    Jurdic P; Saltel F; Chabadel A; Destaing O
    Eur J Cell Biol; 2006 Apr; 85(3-4):195-202. PubMed ID: 16546562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly.
    Luxenburg C; Geblinger D; Klein E; Anderson K; Hanein D; Geiger B; Addadi L
    PLoS One; 2007 Jan; 2(1):e179. PubMed ID: 17264882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale architecture and coordination of actin cores within the sealing zone of human osteoclasts.
    Portes M; Mangeat T; Escallier N; Dufrancais O; Raynaud-Messina B; Thibault C; Maridonneau-Parini I; Vérollet C; Poincloux R
    Elife; 2022 Jun; 11():. PubMed ID: 35727134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone.
    Takito J; Inoue S; Nakamura M
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29587415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of osteoclast bone resorption activity through osteoprotegerin-induced damage of the sealing zone.
    Song R; Gu J; Liu X; Zhu J; Wang Q; Gao Q; Zhang J; Cheng L; Tong X; Qi X; Yuan Y; Liu Z
    Int J Mol Med; 2014 Sep; 34(3):856-62. PubMed ID: 25017214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructural analysis of apatite-degrading capability of extended invasive podosomes in resorbing osteoclasts.
    Akisaka T; Yoshida A
    Micron; 2016 Sep; 88():37-47. PubMed ID: 27323283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myosin X regulates sealing zone patterning in osteoclasts through linkage of podosomes and microtubules.
    McMichael BK; Cheney RE; Lee BS
    J Biol Chem; 2010 Mar; 285(13):9506-9515. PubMed ID: 20081229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tropomyosin 4 regulates adhesion structures and resorptive capacity in osteoclasts.
    McMichael BK; Lee BS
    Exp Cell Res; 2008 Feb; 314(3):564-73. PubMed ID: 18036591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface microtopography modulates sealing zone development in osteoclasts cultured on bone.
    Shemesh M; Addadi L; Geiger B
    J R Soc Interface; 2017 Feb; 14(127):. PubMed ID: 28202594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinctive subdomains in the resorbing surface of osteoclasts.
    Szewczyk KA; Fuller K; Chambers TJ
    PLoS One; 2013; 8(3):e60285. PubMed ID: 23555944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-plastin phosphorylation regulates the early phase of sealing ring formation by actin bundling process in mouse osteoclasts.
    Chellaiah MA; Ma T; Majumdar S
    Exp Cell Res; 2018 Nov; 372(1):73-82. PubMed ID: 30244178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined strategy of siRNA and osteoclast actin cytoskeleton automated imaging to identify novel regulators of bone resorption shows a non-mitotic function for anillin.
    Maurin J; Morel A; Hassen-Khodja C; Vives V; Jurdic P; Machuca-Gayet I; Blangy A
    Eur J Cell Biol; 2018 Nov; 97(8):568-579. PubMed ID: 30424898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Actin-Binding Protein Cofilin and Its Interaction With Cortactin Are Required for Podosome Patterning in Osteoclasts and Bone Resorption In Vivo and In Vitro.
    Zalli D; Neff L; Nagano K; Shin NY; Witke W; Gori F; Baron R
    J Bone Miner Res; 2016 Sep; 31(9):1701-12. PubMed ID: 27064822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyphosphoinositides-dependent regulation of the osteoclast actin cytoskeleton and bone resorption.
    Biswas RS; Baker D; Hruska KA; Chellaiah MA
    BMC Cell Biol; 2004 May; 5():19. PubMed ID: 15142256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apatite-mediated actin dynamics in resorbing osteoclasts.
    Saltel F; Destaing O; Bard F; Eichert D; Jurdic P
    Mol Biol Cell; 2004 Dec; 15(12):5231-41. PubMed ID: 15371537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-topography sensing by osteoclasts.
    Geblinger D; Addadi L; Geiger B
    J Cell Sci; 2010 May; 123(Pt 9):1503-10. PubMed ID: 20375065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tensin 3 is a new partner of Dock5 that controls osteoclast podosome organization and activity.
    Touaitahuata H; Morel A; Urbach S; Mateos-Langerak J; de Rossi S; Blangy A
    J Cell Sci; 2016 Sep; 129(18):3449-61. PubMed ID: 27505886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific antagonists of NMDA receptors prevent osteoclast sealing zone formation required for bone resorption.
    Itzstein C; Espinosa L; Delmas PD; Chenu C
    Biochem Biophys Res Commun; 2000 Feb; 268(1):201-9. PubMed ID: 10652236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.