These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 22090456)

  • 1. Neural prediction of complex accelerations for object interception.
    de Rugy A; Marinovic W; Wallis G
    J Neurophysiol; 2012 Feb; 107(3):766-71. PubMed ID: 22090456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anticipating the effects of gravity when intercepting moving objects: differentiating up and down based on nonvisual cues.
    Senot P; Zago M; Lacquaniti F; McIntyre J
    J Neurophysiol; 2005 Dec; 94(6):4471-80. PubMed ID: 16120661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions.
    Zago M; Bosco G; Maffei V; Iosa M; Ivanenko YP; Lacquaniti F
    J Neurophysiol; 2004 Apr; 91(4):1620-34. PubMed ID: 14627663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prospective versus predictive control in timing of hitting a falling ball.
    Katsumata H; Russell DM
    Exp Brain Res; 2012 Feb; 216(4):499-514. PubMed ID: 22120106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time in motion: effects of whole-body rotatory accelerations on timekeeping processes.
    Binetti N; Siegler IA; Bueti D; Doricchi F
    Neuropsychologia; 2010 May; 48(6):1842-52. PubMed ID: 20227429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interference effect of observed human movement on action is due to velocity profile of biological motion.
    Kilner J; Hamilton AF; Blakemore SJ
    Soc Neurosci; 2007; 2(3-4):158-66. PubMed ID: 18633814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intercepting accelerated moving targets: effects of practice on movement performance.
    Fialho JVAP; Tresilian JR
    Exp Brain Res; 2017 Apr; 235(4):1257-1268. PubMed ID: 28197673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal models and prediction of visual gravitational motion.
    Zago M; McIntyre J; Senot P; Lacquaniti F
    Vision Res; 2008 Jun; 48(14):1532-8. PubMed ID: 18499213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intercepting virtual balls approaching under different gravity conditions: evidence for spatial prediction.
    Russo M; Cesqui B; La Scaleia B; Ceccarelli F; Maselli A; Moscatelli A; Zago M; Lacquaniti F; d'Avella A
    J Neurophysiol; 2017 Oct; 118(4):2421-2434. PubMed ID: 28768737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intercepting moving objects during self-motion: effects of environmental changes.
    Lenoir M; Savelsbergh GJ; Musch E; Thiery E; Uyttenhove J; Janssens M
    Res Q Exerc Sport; 1999 Dec; 70(4):349-60. PubMed ID: 10797893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial contextual cues that help predict how a target will accelerate can be used to guide interception.
    Crowe EM; Smeets JBJ; Brenner E
    J Vis; 2023 Oct; 23(12):7. PubMed ID: 37871013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Keep your eyes on the ball: smooth pursuit eye movements enhance prediction of visual motion.
    Spering M; Schütz AC; Braun DI; Gegenfurtner KR
    J Neurophysiol; 2011 Apr; 105(4):1756-67. PubMed ID: 21289135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual perception and interception of falling objects: a review of evidence for an internal model of gravity.
    Zago M; Lacquaniti F
    J Neural Eng; 2005 Sep; 2(3):S198-208. PubMed ID: 16135884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Humans use internal models to estimate gravity and linear acceleration.
    Merfeld DM; Zupan L; Peterka RJ
    Nature; 1999 Apr; 398(6728):615-8. PubMed ID: 10217143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical acceleration cancellation: a viable interception strategy?
    Rozendaal LA; van Soest AJ
    Biol Cybern; 2003 Dec; 89(6):415-25. PubMed ID: 14673653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interception of moving objects while walking in children with spastic hemiparetic cerebral palsy.
    Ricken AX; Savelsbergh GJ; Bennett SJ
    Disabil Rehabil; 2007 Jan; 29(1):69-77. PubMed ID: 17364758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Task dependent processing of visual information about target acceleration.
    Dubrowski A; Carnahan H
    Brain Cogn; 2000; 43(1-3):172-7. PubMed ID: 10857688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the time-to-passage of visual self-motion: Is the second order motion information processed?
    Capelli A; Berthoz A; Vidal M
    Vision Res; 2010 Apr; 50(9):914-23. PubMed ID: 20171978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of interception of moving targets by chimpanzees (Pan troglodytes) in an automated task.
    Iversen IH; Matsuzawa T
    Anim Cogn; 2003 Sep; 6(3):169-83. PubMed ID: 12761656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal model of gravity for hand interception: parametric adaptation to zero-gravity visual targets on Earth.
    Zago M; Lacquaniti F
    J Neurophysiol; 2005 Aug; 94(2):1346-57. PubMed ID: 15817649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.