These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22090458)

  • 1. Selectivity for three-dimensional contours and surfaces in the anterior intraparietal area.
    Theys T; Srivastava S; van Loon J; Goffin J; Janssen P
    J Neurophysiol; 2012 Feb; 107(3):995-1008. PubMed ID: 22090458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional shape coding in grasping circuits: a comparison between the anterior intraparietal area and ventral premotor area F5a.
    Theys T; Pani P; van Loon J; Goffin J; Janssen P
    J Cogn Neurosci; 2013 Mar; 25(3):352-64. PubMed ID: 23190325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses to two-dimensional shapes in the macaque anterior intraparietal area.
    Romero MC; Van Dromme I; Janssen P
    Eur J Neurosci; 2012 Aug; 36(3):2324-34. PubMed ID: 22626006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A distinct representation of three-dimensional shape in macaque anterior intraparietal area: fast, metric, and coarse.
    Srivastava S; Orban GA; De Mazière PA; Janssen P
    J Neurosci; 2009 Aug; 29(34):10613-26. PubMed ID: 19710314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of inferior temporal and posterior parietal activity to three-dimensional shape perception.
    Verhoef BE; Vogels R; Janssen P
    Curr Biol; 2010 May; 20(10):909-13. PubMed ID: 20434342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macaque inferior temporal neurons are selective for three-dimensional boundaries and surfaces.
    Janssen P; Vogels R; Liu Y; Orban GA
    J Neurosci; 2001 Dec; 21(23):9419-29. PubMed ID: 11717375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward an understanding of the neural processing for 3D shape perception.
    Sakata H; Tsutsui K; Taira M
    Neuropsychologia; 2005; 43(2):151-61. PubMed ID: 15707901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Roles of posterior parietal cortex in stereopsis: characteristics of responses of axis-orientation-selective neurons in monkey caudal intraparietal area].
    Haranaka Y; Endo K; Shein WN; Kusunoki M; Iwata M; Sakata H
    Rinsho Shinkeigaku; 2001 Jan; 41(1):1-10. PubMed ID: 11433760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coding of shape features in the macaque anterior intraparietal area.
    Romero MC; Pani P; Janssen P
    J Neurosci; 2014 Mar; 34(11):4006-21. PubMed ID: 24623778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of binocular disparity in stereoscopic images of objects in the macaque anterior intraparietal area.
    Romero MC; Van Dromme IC; Janssen P
    PLoS One; 2013; 8(2):e55340. PubMed ID: 23408970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Microstimulation in the Anterior Intraparietal Area during Three-Dimensional Shape Categorization.
    Verhoef BE; Vogels R; Janssen P
    PLoS One; 2015; 10(8):e0136543. PubMed ID: 26295941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural correlates for perception of 3D surface orientation from texture gradient.
    Tsutsui K; Sakata H; Naganuma T; Taira M
    Science; 2002 Oct; 298(5592):409-12. PubMed ID: 12376700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell responses to three-dimensional structure in a functionally defined patch in macaque area TEO.
    Alizadeh AM; Van Dromme IC; Janssen P
    J Neurophysiol; 2018 Dec; 120(6):2806-2818. PubMed ID: 30230993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural representation of three-dimensional features of manipulation objects with stereopsis.
    Sakata H; Taira M; Kusunoki M; Murata A; Tsutsui K; Tanaka Y; Shein WN; Miyashita Y
    Exp Brain Res; 1999 Sep; 128(1-2):160-9. PubMed ID: 10473754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The monkey ventral premotor cortex processes 3D shape from disparity.
    Joly O; Vanduffel W; Orban GA
    Neuroimage; 2009 Aug; 47(1):262-72. PubMed ID: 19376235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of primate visual area V4 in the processing of 3-D shape characteristics defined by disparity.
    Hegdé J; Van Essen DC
    J Neurophysiol; 2005 Oct; 94(4):2856-66. PubMed ID: 15987759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caudal Intraparietal Sulcus and three-dimensional vision: A combined functional magnetic resonance imaging and single-cell study.
    Alizadeh AM; Van Dromme I; Verhoef BE; Janssen P
    Neuroimage; 2018 Feb; 166():46-59. PubMed ID: 29080712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP.
    Murata A; Gallese V; Luppino G; Kaseda M; Sakata H
    J Neurophysiol; 2000 May; 83(5):2580-601. PubMed ID: 10805659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Choice-related Activity in the Anterior Intraparietal Area during 3-D Structure Categorization.
    Verhoef BE; Michelet P; Vogels R; Janssen P
    J Cogn Neurosci; 2015 Jun; 27(6):1104-15. PubMed ID: 25514653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An unexpected specialization for horizontal disparity in primate primary visual cortex.
    Cumming BG
    Nature; 2002 Aug; 418(6898):633-6. PubMed ID: 12167860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.