These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22091586)

  • 1. Stepwise effective molarities in porphyrin oligomer complexes: preorganization results in exceptionally strong chelate cooperativity.
    Hogben HJ; Sprafke JK; Hoffmann M; Pawlicki M; Anderson HL
    J Am Chem Soc; 2011 Dec; 133(51):20962-9. PubMed ID: 22091586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of non-covalent preorganization on supramolecular effective molarities.
    Sun H; Navarro C; Hunter CA
    Org Biomol Chem; 2015 May; 13(17):4981-92. PubMed ID: 25819882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of H-bond strength on chelate cooperativity.
    Hunter CA; Misuraca MC; Turega SM
    J Am Chem Soc; 2011 Dec; 133(50):20416-25. PubMed ID: 22112051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steric desolation enhances the effective molarities of intramolecular H-bonding interactions.
    Chekmeneva E; Hunter CA; Misuraca MC; Turega SM
    Org Biomol Chem; 2012 Aug; 10(30):6022-31. PubMed ID: 22580501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between conformational flexibility and chelate cooperativity.
    Misuraca MC; Grecu T; Freixa Z; Garavini V; Hunter CA; van Leeuwen PW; Segarra-Maset MD; Turega SM
    J Org Chem; 2011 Apr; 76(8):2723-32. PubMed ID: 21417288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of supramolecular effective molarities for intramolecular H-bonds in zinc porphyrin-imidazole complexes.
    Jinks MA; Sun H; Hunter CA
    Org Biomol Chem; 2014 Mar; 12(9):1440-7. PubMed ID: 24442274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Chelate Cooperativity in Polar Solvents.
    Henkel S; Misuraca MC; Ding Y; Guitet M; Hunter CA
    J Am Chem Soc; 2017 May; 139(19):6675-6681. PubMed ID: 28467069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing flexibility in porphyrin-based molecular wires using double electron electron resonance.
    Lovett JE; Hoffmann M; Cnossen A; Shutter AT; Hogben HJ; Warren JE; Pascu SI; Kay CW; Timmel CR; Anderson HL
    J Am Chem Soc; 2009 Sep; 131(38):13852-9. PubMed ID: 19736940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of the effect of conformational restriction on supramolecular effective molarities.
    Adams H; Chekmeneva E; Hunter CA; Misuraca MC; Navarro C; Turega SM
    J Am Chem Soc; 2013 Feb; 135(5):1853-63. PubMed ID: 23360075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of porphyrin hexamers via bidentate metal-ligand coordination.
    Lensen MC; Nolte RJM; Rowan AE; Pyckhout-Hintzen W; Feiters MC; Elemans JAAW
    Dalton Trans; 2018 Oct; 47(40):14277-14287. PubMed ID: 29881835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and properties of rhodium(III) porphyrin cyclic tetramer and cofacial dimer.
    Fukushima K; Funatsu K; Ichimura A; Sasaki Y; Suzuki M; Fujihara T; Tsuge K; Imamura T
    Inorg Chem; 2003 May; 42(10):3187-93. PubMed ID: 12739958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regioisomeric control induced by DABCO coordination to rotatable self-assembled bis- and tetraporphyrin α,γ-cyclic octapeptide dimers.
    Hernández-Eguía LP; Brea RJ; Castedo L; Ballester P; Granja JR
    Chemistry; 2011 Jan; 17(4):1220-9. PubMed ID: 21243688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Belt-shaped π-systems: relating geometry to electronic structure in a six-porphyrin nanoring.
    Sprafke JK; Kondratuk DV; Wykes M; Thompson AL; Hoffmann M; Drevinskas R; Chen WH; Yong CK; Kärnbratt J; Bullock JE; Malfois M; Wasielewski MR; Albinsson B; Herz LM; Zigmantas D; Beljonne D; Anderson HL
    J Am Chem Soc; 2011 Nov; 133(43):17262-73. PubMed ID: 21939246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic structures of six-coordinate ferric porphyrin complexes with weak axial ligands: usefulness of 13C NMR chemical shifts.
    Hoshino A; Ohgo Y; Nakamura M
    Inorg Chem; 2005 Oct; 44(21):7333-44. PubMed ID: 16212360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acid-base and metal-ion-binding properties of 9-[2-(2-phosphonoethoxy)ethyl]adenine (PEEA), a relative of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). An exercise on the quantification of isomeric complex equilibria in solution.
    Fernández-Botello A; Griesser R; Holý A; Moreno V; Sigel H
    Inorg Chem; 2005 Jul; 44(14):5104-17. PubMed ID: 15998039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-harvesting supramolecular porphyrin macrocycle accommodating a fullerene-tripodal ligand.
    Kuramochi Y; Satake A; Itou M; Ogawa K; Araki Y; Ito O; Kobuke Y
    Chemistry; 2008; 14(9):2827-41. PubMed ID: 18228544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular chelation based on folding.
    Stone MT; Moore JS
    J Am Chem Soc; 2005 Apr; 127(16):5928-35. PubMed ID: 15839692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Porphyrin Coordination Cage Assembled from Four Silver(I) Triazolyl-Pyridine Complexes.
    Ballester P; Claudel M; Durot S; Kocher L; Schoepff L; Heitz V
    Chemistry; 2015 Oct; 21(43):15339-48. PubMed ID: 26338089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate length control of supramolecular oligomerization: Vernier assemblies.
    Hunter CA; Tomas S
    J Am Chem Soc; 2006 Jul; 128(27):8975-9. PubMed ID: 16819894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.